Automated Model Creation from Aerial Photography

Greg Rafalski

gxr9935@rit.edu
Center for Imaging Science, Rochester Institute of Technology
Carl SalvaggipAdvisor

ABSTRACT

Creating a model, instead of just making measurements, is a common task inghotetyy todayMethods can vary
depending on the requirements, data availability, and type of sc@iermamount of user input is one major
differentiating factor. The methods discussed in this paper align closely with a typical workflow for urban rfrapping
aerial photographs.

1. INTRODUCTION

The concept of making measurements from photographs actually predates the advent of the chemical photographic
processLike with all sciences, photogrammetry bertefitfrom countless technological advance®r tre years

Heavier than air flight was one such advance that allowed for much wider survey callaetiah photography, and
photogrammetry, became an increasingly important source of data for city pleamgpilcgl/ture and the military. Before

the airplane, such photographs had to be t’aken from tall buildings, balloons, and pigeons.

Figure 1i World War One Aerial Reconnaissance Pigeons

Until approximately 1900, there were mapping and military uses for simglge photogrammetryyith stereo
photograps were mainly used for novelties. Dirigibles and, later, aircraft made aerial photogrammetry practical. Multi

view imaging also became a reality with a stable imaging platform and the ability to plan and quickly execute flight lines

over an area of intesé Cartographers no longer had to rely on completely manual surveys, and photographs could be
taken from high altitudes without relying on mountains.

The methods for image acquisition and analysis continue to improve, but the basic idea is stittothextrast spatial
information possible from image sets. Improvements came along in optics, film, flight planning, and analysis
methodologiesThe technologies exploited in this paper belong to analykis.papeexploresthe ability for a
computer toun a large number of calculations and producedar®nsional model of the scene without user inphts
is done with imagery from an uncalibrated camera and a relatively complex urban scene.

2. BACKGROUND

The data set used in this project comes froenfildfire Airborne Sensor Program (WASP). The full data set was from

a mapping mission over the city of Rochester with high overlap between inadmges 7090%. Seven of these images
contairing the Chester F. Carlson Center for Imaging Science buildinty® Rochester Institute of Technology campus
were usedEach of these images comes with GPS/IMU data recorded with an Applanix system. A reduced resolution
example of one of these images is shown below. The raw images are 4000x2762 pixels.

Figure 2i Sampleimageused in thigpaper The circled area ishown at full resolutiomtthe bottom

There are many uses for 3D models created from aerial imadany. techniques exist for creating these models
requiring varying amounts of user input and metadAs may be expected, the ultimate goal is a fully automated
procedurehat would producdigh qualitygeoaccurate modelRIT CIS is oneof many researchem this topic and
their efforts are documented hehétp://www.cis.rit.edu/~drn2369/

While still an active area of research, there are many compaatieslyusing some of these techniques. Tpvoducts

with large user basare Google and Bing Maps. The Bing maps utility grewodilicrosoftLive Lab 6s Phot osynt |
project which allows users to create virtual tours using photographarésditched together. As of 2008, Microsoft

stated that an average sized city took two weeks to create using 5,000 CPUs.

http://www.cis.rit.edu/~drn2369/

Without metadata, the best model that capreeluced will only be to scale. That is to say, the proportions will be

correct, but it will be in an arbitrary coordinate spdoeorder to create a metric model from which measurements can be
obtained, camera data such as the focal length and thepfiotebf the sensor are requirast ground truth calibration

Using a process called bundle adjustment, camera positions can be calculated and the scale information provided by the
camera parameters allofeg accurate measurements. Adding in the camesition and orientation from a GPS/IMU

unit will allow that metric model to reside in reabrld latitude and longitude.

3. METHODOLOGY
A typical workflow for model c¢creation, commonly called

1) Find point matches betweeeach of the imageshis is ommonlyper f or med wi th David
Invariant Feature Detection (SIH8).

2) Execute bundle adjustment to refine the relative position and orientation of each of the cameras. Commonly
performed with Bundler

3) Run Clusterig view for Muli-View Stereo and Patdbased MultiView Stereo (CMVS/PMVS) to find and
refine the 3space location of as many points from the images as possible.

Running this workflow will result in a point clousuch as can be seen in Figure 3, which cannkterpolated into a
surface as in Figure 4

Figure 4i Point Cloud Interpolated to@oloredSurface via Meshlab

Many algorithms for creating the final model start at the point cloud and attempt to refine redigéanes. Tis

algorithm proposes an alternative workflow in which ¢dgesare foundbefore the point correspondence of step
above. This change ruled out using a-poenpiled CMVS/PMVS toolbox since that will look for all possible points and
not justspecified ones. The new workflow then looks like this:

1) Use camera metadata to determine image corner coordinates
2) Use corner coordinates to determine which pairs overlap

3) Run Edge detection ancbnvert the resulting binary image to a set of vertices remtiagecontinuous line
segments.

4) Find point matches between each of the imagasy SIFTGPU.
5) Calculate the fundamental matrices for each pair.

6) Use the fundamental matrices toditnansfornation matricesthat can be used tectify each pair and save them
to disk.There will now be a stereo pair for all combinations of overlapping images.

7) Transform the coordinates for all of the line segments found in step 3 to the new rectified coordinate system
shared by each pair.

8) Go through the list of transformed pdirfor each image and search for the corresponding point in its stereo pair.
9) If the point is found, use the photogrammetric parallax equation to determine its elevation.
10) Since the same point is likely to lie in multiple images, reduce errors by averagjicgchlated elevations.

11) Use the camera metadata, the flowwn point elevations, and trigonometry to determine latitude and longitude
for all the points.

All of this is done in Matlab, except for SIFTGPU, which is a C++ plugin for Matlab called YASIFT.
A more detailed explanation of each step follows.

Step 1i Determine Corner Coordinates

The camera metadata was provided as: Latitude (degrees), Longitude (degrees), Elevation (meters HAE), Roll (degrees),
Pitch (degrees), and Yaw (degrees). Roll, pitctd gaw were relative to a flat northerly flight path. The camera focal
length was given as 55 mm, and the sensor pixel pitch was given as 9 microns.

From there, vectors were created that corresponded to the bore site (center) of the image, and &l tmunefs. The
area of interest was known to be relatively flat, so a single ground elevation was used, and the vectors were projected
down until a point of intersection was found.

Focal Length

Unit Vector

In Image Pointing Vector
Coordinates Extended to Ground /= : .
Y Offset Nadir Vector
X Offset
Intersection Point /
for Latitude/Longitude
Rotation of Pointing Vector in Image Space Rotation of Pointing Vector in World Space

Figure 5i lllustration of Vector/Plane Intersection

Step 2i Find Ovetapping Pairs

Step 2 was unnecessary for thémage dataset used since they all overlapped, but adding this step would allow for
extending this code to much | arger datasets where the
possibly bilions, of calculations performed in step 4 would be saved.

Because the image footprints on the ground will most likely not be perfect rectangles, it is not a straightforward
calcul ation, and is similar t o t hest solutiors was docaléulate itha t i n

intersection of each possible pairés edges and i f an i1
[5].
Figure 6 below shows the image footprints on the ground, calculated with the method descritegml in Ehe

coordinates at the corners are what is used to calculate image overlap in this step. The red circles represent the bore sight
of the camera at each location.

43,089 — —

23088 i

43,0686 || \ i _—

43.085 ') b R g ——
|

- | [I

L - Wl { |

LY —— VY [

g | b ﬂl b B! | o
i \ i

1308 "\ \ A Y |

23062 —

Figure 6i Image Footprints

Step 3i Find a List ofLine Segments

This is the most ugue addition to the workflow. In this step the possible edges to search for are found before searching
for point correspondence$here are lireebenefits to this. First, finding a list of vertices will drastically reduce the
number of correspondence sg@s performed, and computation time required, in step 8. Second, finding corners and
edges in a 2Dnhage is simple. Searching for distinct edges and corners is a difficult task to perform on a point cloud.
Any refinement done on the point cloud to redoatulation errors (i.e. to make planes flat) will also result in rounded
edges. Look closely at figure 4 and note there are no sharp edges. Third, storing a list of all the linked lines in an image
is essentially building the wireframe model. The resgltist only needs the elevation for each vertex.

This is performed by firstreating a binary edge image with the Canny edge detector. The edge pixels are then
iteratively searched for adjoining pixels and grouped. Any group that cofeasthan a spefied number of pixels is
removed6].

Once each group is identified, the algorithm attempts to simplify the group®egiing and end points are easily set.
From those end points, a single line is construaed, each of the edge pixelstésted to se if they fall farther away

than a given tolerance. If they do, a vertex is added to the line, nearest to the outlying pixel. The new set of@tks is tes
again, and the process is repeated until all of the original pixels fall within the specifiedt@isiadhe new linekach

of these line segments is stored, one by one, into a cell array for individual retrievaBéddsr.is an example of the
image from Figure 2 with its detected line segments with a minimum length of 15 pixels.

Figure7 1 Linescreated fromedgedetection The lower portion shows the same enlarged portion as figure 2

Step 4i Find Initial Point Matches

David Loweds Sc aTransform{SIFa)risi aavonderfl# ®a that is esed for video stabilization, feature
tracking and image matching. SIFT will characterize a pixel by looking at its surrounding area and calculate 128
different values that represent that pixel. It will do tlas dll of the pixels in all of the images, and pick which pixels
correspond to each othéBecause of the way the characteristics are chosen, it can find matches regardless if the images
are from different angles, or sizésnding these corresponding points will lay the foundation for the remaining portions

of the workflow.

SIFT works greatput its speed is greatly increased when calculations are done in parallel on the graphics card.
Changchang Wu developed this GPU implementation, and Parag Mital ported it over for use in Maflails Etgp can

be done without GPU processing, but thereasedspeeds too good to pass up. There are two factors to consider when
performing SIFT on a graphics card: 1) Adding more GPU cores will fasa@rresults, but 2) Adding more memory

on the graphics card will meanore accurateesults.Consideratio number 2 is true because if the code detects that it
will not be able tastoreall of the information it needs into a contiguous block of memory, itredlliceall of the images

to half resolution.

Step 5i Create Fundamental Matrices

The fundamental ntax describes the epipolar relationship between two images. If you pick a pixel in one image, you
can use the fundamental matrix to find a line along which the same point lies. Calculating the fundamental matrix
requires at least 7 matched points betwibertwo images. These matched points come from SIFT in step 4.

SIFT works well, but it will find some mismatched pairs. To correctly calculate the fundamental matrix, these spurious
matches must be minimized. The technique used here is RANdom SAmple SIen¢BANSAC). The details of
RANSAC will be left out, as this is a common step in model creffjoihe entire fundamental matrix calculation was
performed in this case with the Computer Vision toolbox forlMbat2012 The version of MatLab is specifiecebause

many of the functions in the Computer Vision toolbox changed from 2011. The two major chffegesd the point
matches in this workflow: The coordinate system switched freyntox row-column, and went from a row vector to a
column vectorThe orignal x-y coordinate system allowed for negative values, whanrecolumn is more typical of a
MatLab representation of a matrix.

Step 6/ Image Rectification

With the fundamental matrices now knevthe transformation matrices for each image pair cantesmalculatedThe
transformation matrices will warp the two images such that all of the parallax is in the horizontal directiotwio the
images. The Mat Lab command f dhisisthow stered mirs iare formeda and these images could
now bedisplayediogetherasa red/cyan anaglyph. An example showing the same image as Figure 2 and one of its stereo
mates is shown below.

Figure81 Stereogpairsin aredtyananaglyph Inset at lower right shows the same enlarged portion as figure 2
Step 71 Transform Line Segments

The same transformation matrices used to create the stereo pair can also be used to move the lines found in step 3 to the
stereo coordinate system. This makes use of thee At for |
transform using the homogenous form of the originaf Yoint locations.

This transform will put each of the line vertices from step 3 into a shared, but arbitrary, coordinate system. The bounding
box containing the two images in this coordinate systems saved as an output of the #fi
in calculations, the transformed line segments must be shifted to the pixelohanwn system. That is a simple
addition/subtraction applied equally to all of the output values, and was useerkay the lines in Figur@.

Figure9i Edgelinesoverlaid onto theectifiedimage The lower portion shows the same enlarged portion as figure 2.

Step 8i Point Correspondence for Line Segments

With all of the lines in the shared coordinate systdithe stereo pair, all of the necessary information is now present to
search for the corresponding points in the second image. Because the rectification step moved the parallax into the
horizontal direction, the search area has been drastically limitedmiatching point in the mate image should lie in the

same row as the input point of the base image.

As mentioned previously, because the point search does not run through the typical workflow, the more robust
CMVS/PMVS tool cannot be utilized. Insteadwstomized search algorithm was created.

Each vertexof the detected lines taken individually. A 5x5 kernel using the surrounding pixels is created from the base
image. Then, using the neaimage, a strip consisting of the 7 rows centered on that gfainé of interest is created.
The strip is 7 pixels tall instead of 5 to allow for the possibility of error in parallax alignment.

The corresponding point in the mate image could lie anywhere alorgrifhebut only extremely tall objects would
have a lege parallax in aerial images containing as much overlap as these images share. Knowing this, the actual search
area was limited to 101 columns surrounding the point of interest, 50 to either side.

The search is an iterative double loop in the MatLab code;for the three searched rows, one for the columns. The
kernel is slid across the strip and a score comparing it to the 5x5 pixels at that point in the strip is stored. Atfthe end o
the loop, the best unique score above a threshold is deemed tddmmttmn of the matching point.

The actual comparison was attempted in two ways. The first was to take the dot product of the two 5x5 blocks. This
would be similar to the Spectral Angle Mapper, which is a classification method used in multi and hydrspectr
imaging. The resultingwput for each comparisas the angulardistancebetweenthe two blocks in 2&limensional

space. This was the preferred method, because it can make a comparison even if the images were taken with different
illumination.

Thelessidealmethod that was used its placewas a straight pixefor-pixel difference between the two blocks. To help
account for possible illumination differences, during the rectification step, the mate image was histogram matched to the
base image. Despiits simplicity, this method resulted in a better set of matched lines. As can be seen inlBigure
though, it still was not successful to a useful degree.

10

Figure107 Matched Lines Found in the Mate Image

11

