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ABSTRACT

The purpose of this research is to show how common com-
puter vision techniques can be implemented in such a way that

Van Lare wastewater treatment plant in Rochester, NY.

1. INTRODUCTION

With recent advances in the field of computer vision, the
number of automatic and semi-automatic methods of recon-
structing three-dimensional point clouds of objects using
multi-view images has grown. Many of these algorithms are
focused on using a large database of images collected from
many people to reconstruct structures that many people visit,
a process often referred to as “phototourism”[1] .

There is an interest in the remote sensing and photogram-
metry community to find ways to automatically extract three-
dimensional models of scenes. Techniques using LIDAR
data along with a sparse three-dimensional point cloud gen-
erated using the phototourism technique have been devel-
oped [2]. Other techniques have attempted to reconstruct
building structure by matching lines and planes across aerial
imagery[3]. Finally, other methods have attempted to use re-
mote sensing segmentation/classification algorithms to learn
more about the scene to do the reconstruction [4]. The
approach of this research is to utilize photogrammetric tech-
niques on remotely-sensed imagery to perform analytical

�

phototourism process with other computer vision techniques

to generate denser correspondences. This involves merg-

ing concepts from both the computer vision community and

the photogrammetry community to produce an accurate three-

dimensional model of a target object in the scene. A work�ow

has been established that uses nadir imagery taken from the

RIT WASP sensor to extract structure from a scene[5].

This work�ow is broken up into four separate parts; 1)

feature detection and camera pose estimation , 2) sparse

three-dimensional reconstruction and optimization, 3) geo-

recti�cation, and 4) dense model extraction. This process

exports this model as an OBJ/ODB �le for input into the

physical simulation environment, such as the DIRSIG envi-

ronment developed by the Digital Image and Remote Sensing

Lab at RIT [6]. Currently all facets on the object can only be

assigned a single spectra, however, future work will attempt

to use classi�cation/segmentation methods to assign appro-

priate spectra to different facets on the model.

2. FEATURE DETECTION AND POSE ESTIMATION

The scale invariant feature transform (SIFT) algorithm is
currently one of the more popular feature detectors used by
the computer vision community to perform image-to-image
correspondence [7]. This algorithm is capable of generating
thousands of invariant features in an image. Invariant, in this
case, means the spatial region around the feature will remain
constant if the viewpoint changes. The SIFT algorithm uses
difference of Gaussian kernels of varying widths to generate
features along edges and at corners in the image. A gradient
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histogram of the region around each feature is calculated.
The gradient histogram describes the general orientation of
the region around the feature and it is described relative to the
orientation and scale of the detected feature. Due to the rela-
tive description of the gradient histogram, it can be used as a
scale and rotation invariant descriptor for each feature. This
descriptor will not change greatly when the viewpoint for the
target is changed. This allows for matching to be easily done
between two images described by SIFT features. Matching
features using SIFT is simply done by finding the closest
matching descriptor between two images using a minimum
Euclidean distance between the descriptor vectors [7]. This
yields the initial correspondence between the images. Figure
1 shows how thousands of points between two images can be
matched.

Once the correspondences are found the next step is

Fig. 1. Thousands of features detected and matched between
two images[8]

removal of the bad correspondences and estimation of the
epipolar geometry of the system. This is done in one process
using the Random Sample Consensus (RANSAC) model fit-
ting approach. RANSAC is an optimization algorithm that
repeatedly and randomly selects a number of observations
from a large set of data and attempts to determine the best
model, excluding outliers[9].

The model that is used in this situation is taken from the
computer vision community. For any two images looking
at the same object from two different views; a point in one
image will correspond to a line in other image, called an
epipolar line. This epipolar line could be thought of as an im-
age of the line originating from each point in the first image.
This relationship between the two images is described by the
fundamental matrix.

Fx1 = l2 (1)

F is the 3x3 fundamental matrix, x1 is a homogeneous point
in image 1, and l2 is the epipolar line in image 2. Homoge-
nous geometry dictates that the dot product between a point
and a line where the point falls on the line must equal zero. So
the corresponding point in image 2 is related to the epipolar
line in image 2 as

xT
2 l2 = 0 (2)

Substituting equation 1 into equation 2, allows the funda-
mental correspondence equation to be derived.

xT
2 Fx1 = 0 (3)

Any two matching points, given that the fundamental ma-
trix relationship exists between the two images looking at the
same object, must obey this equation[10]. The fundamental
correspondence equation is the model fit using RANSAC.
The dataset comes from the initial SIFT matches. Correspon-
dences are randomly selected and the fundamental matrix
is calculated. The fundamental matrix that fits the dataset
best is chosen as the fundamental matrix for the two images.
Matches that do not satisfy equation 3, within some thresh-
old, are determined to be false matches and are removed.
The output of the SIFT-RANSAC process yields a sparse
selection of point correspondences between two images and
the fundamental matrix describing the pose of these images
relative to each other.

3. SPARSE THREE-DIMENSIONAL
RECONSTRUCTION AND OPTIMIZATION

Once a selection of point correspondences has been found,
basic photogrammetry can be used to calculate the three-
dimensional point for each correspondence. One advantage
that aerial images have in this process is that the camera
position data is often available for each image, eliminating
the need to estimate it from the data provided, thus reducing
errors. For the purposes of this research it is assumed that the
imagery was taken coincident with accurate inertial measure-
ment data.

Figure 2 depicts the model that is assumed using ba-

Fig. 2. The model used for calculating the three-dimensional
coordinates in basic photogrammetry

sic photogrammetry to calculate the three-dimensional point.
The X,Y, and Z coordinate can all be calculated based on
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known parameters between the two images using the geom-
etry of the model. B is the baseline between the two images,
H is the flying height, f is the focal length, and the subscripts
l and r refer to the left and right images, respectively[11].

X =
Bx l

xl − xr
(4)

Y =
By l

xl − xr
(5)

Z = H − Bf
xl − xr

(6)

This model assumes the plane is flying flat and level
along the x-axis in this coordinate system. It is unlikely that
the plane will do this in a real collection so the flight line must
be found and the image coordinates have to be transformed
relative to the flight line to fit this model. The coordinates also
have to be projected onto a virtual focal plane that simulates a
nadir-looking image to remove the roll, pitch, and yaw effects
of the aircraft. This error correction is done here so that a
good estimate of the three dimensional point can be found.
Having an accurate estimate of the three dimensional point
allows for the second error correction step to be performed
with more accuracy.

Once the three-dimensional coordinate estimate is found
using basic photogrammetry, the system of point matches,
cameras, and coordinates are optimized using a sparse bundle
adjustment (SBA). The SBA minimizes the reprojection error
across the whole system. The camera can be mathematically
described as a three-dimensional to two-dimensional projec-
tion matrix:

P = KR [I| − t] (7)

Where K is the camera calibration matrix, R is the ro-
tation matrix, and t is the three-dimensional position of the
camera [10]. The projection of a three dimensional point to
the image plane is then defined as

x = PX (8)

SBA tries to minimize the Euclidean distance between the
known feature coordinate and the feature coordinate based on
the model: ∑

d (x;PX)
2 (9)

SBA will minimize the error across the whole scene by adjust-
ing all the parameters including the three-dimensional point
coordinates and the camera parameters. This process is used
on a bundle of image to image matches in order to minimize
the error across the whole scene [12].

4. GEORECTIFICATION

After the error across the three-dimensional points is min-
imized using SBA, the point cloud is then georectified by

exploiting the available positioning data that comes with im-
agery. The collinearity equations are used to perform the
georectification. It is assumed that the position data from
the imagery has been applied to the imagery so that each
pixel has a UTM coordinate. The three-dimensional points
are then projected through the collinearity equations onto
the georefereced image. This is used as a mapping so that
each three-dimensional point can be referenced to a univer-
sal transverse mercator (UTM) geographic coordinate. This
process can be accomplished using Equation 8 and projecting
the points through the camera model. Both processes provide
the same results.

5. DENSE THREE-DIMENSIONAL
RECONSTRUCTION

Each of the previous steps are part of a workflow that gen-
erates a sparse georeferenced three-dimensional point cloud
and a fundamental matrix describing the matching images.
Those steps are repeated over a bundle of images to generate
a number of sparse point clouds. In these image bundles a
“base image” will be defined as the image which all the other
images in the bundle overlap. These regions of overlap can be
easily determined using the camera parameters and the sparse
bundles adjustment. A user may be interested in generating
a higher resolution three-dimensional point cloud of a target
within the sparse point cloud. This can be done within the
framework of this workflow.

From Equation 1, it is known that a point-to-line corre-
spondence can be found using the fundamental matrix. This
matrix is known at the end of the sparse point cloud extraction
process, so it is possible to generate epipolar lines between
images. Figure 3 shows this relationship between three im-
ages.

Using the fundamental matrix, the correspondence prob-

Fig. 3. The point to epipolar line correspondence between
three images

lem can then be reduced to a search along a single line. With
this point-to-line correspondence, a region around the point
in the first image is cross-correlated along the line in the other
images until the best match is found. This can be done for
every point in the image, however, this is very computation-
ally expensive. In this workflow, the user selects a region
of interest (ROI) over a target that they wants to generate a
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denser point cloud for, and passes the ROI along with the
corresponding fundamental matrix to this process. The ROI
must be within a region of overlap between the images. The
dense correspondence process is done for every point in the
ROI. The dense three-dimensional point cloud extraction fol-
lows exactly the same approach as the sparse point cloud
extraction, using basic photogrammetry. The dense point
clouds can also be put through the sparse bundle adjustment
and then georectified and inserted into the sparse point cloud.

Having a dense three-dimensional point cloud leads to
the option of being able to generate a dense facetized three-
dimensional model. Currently the point cloud is facetized
using a basic Delauney triangulation, the facetized model
can then be output in any format. This, however, is not the
best way to attempt to generate a CAD-like high resolution
model of a target. Work is currently in progress to implement
“smart” plane and line fitting which is automated or semi-
automated. These processes have typically been implemented
on LIDAR data. [13, 14] The dense three-dimensional point
cloud is comparable to LIDAR point clouds which leads to
the presumption that these methods may work in generat-
ing accurate CAD-like models from dense three-dimensional
point clouds.

6. RESULTS

This workflow was tested on a dataset flown by the RIT
WASP sensor over the Van Lare wastewater treatment plant
in Rochester, New York. The sparse point cloud extraction
process was run on this bundle of five images. The center
image of the bundle is the base image. Figure 4 shows the
four generated point clouds after SBA had been applied. It
also shows the whole point cloud projected down onto the
base image for georectification.

Figure 3 shows a selection of three sub-images from

Fig. 4. The four generated point clouds after sparse bundle
adjustment as well as the point clouds projected onto the base
image for georectification.

this dataset that were used in the generation of a dense point
cloud. Figure 5 shows the output of the dense point cloud
process.

Fig. 5. The dense point cloud generated from figure 3

7. CONCLUSION

This work demonstrated that it is possible to use a well-
defined computer vision methodology along with basic pho-
togrammetric principles to develop a semi-automated work-
flow to extract sparse and dense point clouds from a set of
aerial images. One additional area under study is implement-
ing better methods of turning the dense three-dimensional
point cloud into a high resolution CAD-like model. Algo-
rithms like “smart-boxes” will tested on the dataset to see
if the dense point cloud is dense enough to work with al-
gorithms that are intended for use with LIDAR data [14].
Computer vision and photogrammetry are two fields of study
that do not often come together to help each other. This work
is putting forth the idea that these two areas could benefit a
great deal from the individual strengths in the automation of
analytical photogrammetry.
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