ROCHESTER INSTITUTE OF TECHNOLOGY
Rochester, New York

COLLEGE of SCIENCE
Department of IMAGING SCIENCE

REVISED COURSE: 1051-462

1.0 TITLE: DIGITAL IMAGE PROCESSING II
DATE: 9 April 2004
CREDIT HOURS: 4
PREREQUISITE(S): 1051-361
COREQUISITE(S): none
COURSE PROPOSED BY: Carl Salvaggio

2.0 COURSE INFORMATION:

<table>
<thead>
<tr>
<th></th>
<th>Contact Hours</th>
<th>Maximum Students / Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classroom</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>Lab</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Studio</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Other</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

QUARTER(S) OFFERED: (every other year)

x Fall ___Winter ___Spring ___Summer

STUDENTS REQUIRED TO TAKE THIS COURSE:
Imaging Science, 3rd/4th year

STUDENTS WHO MIGHT ELECT TO TAKE THE COURSE:
Imaging and Photographic Technology, Computer Science, Environmental Science, Applied Mathematics, Physics

3.0 GOALS OF THE COURSE:
The goal of this course is to provide the student with an understanding of basic digital image processing concepts and to develop their IDL skills so that they can implement these concepts to facilitate application to real imagery.

4.0 COURSE DESCRIPTION:

1051-462 Digital Image Processing II
This course is an introduction to the more advanced concepts of digital image processing. The student will be exposed to image reconstruction, noise sources and techniques for noise removal, information theory, image compression, video compression, wavelet transformations and the basics of digital image watermarking. Emphasis is placed on applications and efficient
algorithmic implementation using the IDL programming language.
Prerequisites: (1051-461) **Class 4, Credit 4 (F)**

5.0 **POSSIBLE RESOURCES:**

5.4 Student version of IDL 6.0

6.0 **TOPICS:**

6.1 Image reconstruction

6.1.1 Image degradation model

6.1.2 Noise functions

6.1.2.1 Gaussian

6.1.2.2 Rayleigh

6.1.2.3 Erlang or Gamma

6.1.2.4 Exponential

6.1.2.5 Uniform

6.1.2.6 Impulse

6.1.3 Noise removal filters

6.1.3.1 Arithmetic mean

6.1.3.2 Geometric mean

6.1.3.3 Harmonic mean

6.1.3.4 Contraharmonic mean

6.1.3.5 Median

6.1.3.6 Minimum

6.1.3.7 Maximum

6.1.3.8 Adaptive local

6.1.3.9 Adaptive mean

6.1.3.10 Periodic

6.1.3.10.1 Band pass

6.1.3.10.2 Band reject

6.1.3.10.3 Notch pass

6.1.3.10.4 Notch reject

6.1.3.11 Inverse

6.1.3.12 Weiner

6.1.4 Removal of noise from a real-world imaging system

6.2 Image compression

6.2.1 Basic metrics for compression effectiveness

6.2.1.1 Relative data redundancy

6.2.1.2 Compression ratio

6.2.2 Types of redundancy
6.2.2.1 Coding
6.2.2.2 Interpixel
6.2.2.3 Psychovisual
6.2.3 Encoder/decoder models
6.2.4 Basic metrics for compression/decompression performance
 6.2.4.1 Root-mean-square error
 6.2.4.2 Mean-square signal-to-noise ratio
6.2.5 Information theory
 6.2.5.1 Information content in an event
 6.2.5.2 The information channel
 6.2.5.3 Using information theory to reduce message size
 6.2.5.4 Shannon’s first theorem
6.2.6 Predictive coding
 6.2.6.1 Lossless DPCM
 6.2.6.2 Lossy DPCM
6.2.7 Variable length coding
 6.2.7.1 Shannon-Fano
 6.2.7.2 Huffman
 6.2.7.3 Arithmetic
 6.2.7.4 Image pyramids
 6.2.7.5 Kodak PhotoCD
 6.2.7.6 LZW
6.2.8 Transform coding
 6.2.8.1 Discrete cosine transform (DCT)
6.2.9 JPEG
6.2.10 Windows BMP
6.3 Video compression
 6.3.1 MPEG-1
 6.3.2 MPEG-3
6.4 Wavelet transformations
 6.4.1 Basis functions
 6.4.2 Use in image compression
6.5 Digital watermarking/information hiding
 6.5.1 Encryption
 6.5.2 Phase dispersion
 6.5.3 Algorithm robustness

7.0 INTENDED LEARNING OUTCOMES AND ASSOCIATED ASSESSMENT METHODS OF THOSE OUTCOMES:

7.1 Ability to put into practice the basic image processing concepts presented in 1051-461 to perform more advance image processing techniques such as restoration, compression and information hiding (HOMEWORK/PROGRAMMING ASSIGNMENTS / EXAMS)

7.2 Ability to use IDL as an interactive problem solving tool and visualization system (HOMEWORK/PROGRAMMING ASSIGNMENTS)
8.0 PROGRAM OR GENERAL EDUCATION GOALS SUPPORTED BY THIS COURSE:

8.1 The student will have an advanced set of tools with which they can perform image restoration, image and video compression and digital information hiding/watermarking.

8.2 The student will enhance their proficiency in using IDL as an image processing environment and further their readiness to become active algorithm developers in industry.

8.3 The student will apply the mathematics to which they have been exposed in earlier course work to applied image processing problems.

9.0 OTHER RELEVANT INFORMATION:

9.1 Course needs to be conducted in a classroom equipped with a high-resolution projector (1280x1024) for classroom instruction.

9.2 Course requires access to a computer laboratory with IDL.

10.0 SUPPLEMENTAL INFORMATION:

none