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Abstract—The utility of an image is an attribute that describes
the ability of that image to satisfy performance requirements for
a particular application. This paper establishes the context for
spectral image utility by first reviewing traditional approaches to
assessing panchromatic image utility and then discussing differ-
ences for spectral imagery. We define spectral image utility for the
subpixel target detection application as the area under the receiver
operating curve summarized across a range of target detection
scenario parameters. We propose a new approach to assessing
the utility of any spectral image for any target type and size and
detection algorithm. Using six airborne hyperspectral images, we
demonstrate the sensitivity of the assessed image utility to various
target detection scenario parameters and show the flexibility of
this approach as a tool to answer specific user information re-
quirements. The results of this investigation lead to a better under-
standing of spectral image information vis-à-vis target detection
performance and provide a step toward quantifying the ability of
a spectral image to satisfy information exploitation requirements.

Index Terms—Hyperspectral imagery, object detection, spectral
image analysis, spectral image utility.

I. INTRODUCTION

ADVANCES IN electro-optical spectral imaging—the
process of collecting spatially coregistered images in

multiple spectral bands—have led to increased spectral and
spatial resolution. The finer sampling and improved signal-to-
noise characteristics of future imaging spectrometers promise
enhanced performance in applications such as land cover clas-
sification, mineral exploration, atmospheric characterization,
and spatially unresolved object detection. However, without a
means of quantifying the usefulness of a spectral image for a
particular application, we cannot fully appreciate the additional
information inherent in this higher resolution spectral imagery.
Toward this end, we seek a spectral image utility metric that
quantifies the ability of an image to satisfy application-specific
performance measures. We postulate that the ability to consis-
tently assess spectral image utility is an important step toward
advancing our understanding of spectral image information
content, and is a topic worth considering now, before the next
generation of imaging spectrometers becomes fully operational.

A. Image Utility Definition and Motivation

The term “image utility” quantifies the ability of an image
to satisfy performance requirements for a well-defined task.
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More generally, it describes the ability of the image to deliver
information about the object being imaged. Thus, any metric
of image utility is fundamentally an application performance
measure. The subtle difference between an image utility metric
and an application performance measure is based on one’s
perspective: image utility focuses on labeling a specific image’s
usefulness in a particular application, whereas a performance
measure focuses on describing the performance of the ap-
plication across many images. While image utility has been
studied in the context of panchromatic imagery and predicting
image utility, there has been no systematic exploration of the
assessment of spectral image utility.

There is a compelling need for a spectral image utility
metric and the capability to assess images using such a metric.
Such a metric could be applied to many images to build a
catalog of utility-labeled images covering many image acqui-
sition and application-specific scenarios. The robust ability to
assess the image utility for a given application would create the
foundation for an image archive indexing scheme. An archive of
spectral images, each with a utility label, would then facilitate
sensor design trade studies and provide a basis for guiding
future image collection activities. These important capabilities,
which use current images to optimize future sensor designs
and imagery collection activities to acquire the most useful
images, will only be possible with a reliable utility metric and
a consistent method to assess the utility of many images.

B. Panchromatic Image Utility and Its Assessment

In the optical remote sensing community, the traditional
measures of image utility center on the analysis of panchro-
matic photographs and digital images by human image analysts.
The task is to interpret the image and extract meaningful
information by using spatial detail in the image. The national
imagery interpretability rating scale (NIIRS) is the most widely
used image utility measure in this context. It was developed
in the early 1970s as a response to the inability of simple
measures of physical image quality such as scale and resolution
to successfully communicate image interpretability [1]. The
NIIRS has ten levels, each defined by specific interpretation
tasks which require better spatial resolution with increasing task
difficulty. A higher NIIRS represents a more useful image from
the perspective of the image analyst extracting information.
NIIRS was developed by a group of image analysts who rated a
large sample of interpretation tasks in terms of relative difficulty
and validated the scale on many images [2]. Using NIIRS,
image utility for panchromatic imagery is assessed when im-
age analysts assign a NIIRS rating to an image using their
judgment as to the level of interpretability of the particular
image. NIIRS has proven to be extremely valuable tool for
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Fig. 1. Image chain and factors that influence image utility.

providing a shorthand description of image interpretability,
facilitating communication between image analysts, defining
image requirements, selecting and tasking imaging systems,
providing quality control feedback to operational systems, and
specifying the performance of new imaging systems [3].

C. Spectral Image Utility

Although very helpful in assessing the utility of panchro-
matic images, the NIIRS does not capture the radiometric
and spectral aspects of spectral imagery. This inadequacy is
primarily due to the fundamental differences in exploiting the
information inherent in each type of image. The information in
panchromatic images is extracted by the perception of spatial
detail and patterns by a human observer. By contrast, spectral
images are processed by computer algorithms operating on the
spectrum associated with each pixel individually and exploiting
the statistical or subspace characteristics of the image pixel
vectors to uniquely identify the material in the correspond-
ing ground resolution cell. Thus, the interaction between the
spectral, radiometric, and spatial nature of a spectral image
contributes to the ultimate utility of a spectral image [4].

If we adopt the perspective that image utility is another name
for the performance metric of a specific application, then we
arrive at a spectral image utility metric by using the measures of
performance routinely employed to evaluate spectral processing
algorithm performance. The simplest method to assess spec-
tral image utility is by applying an information exploitation
algorithm to the image. Thus, performance measures such as
probability of detection (PD) for target detection tasks and
classification accuracy for classification applications can be
used for quantifying spectral image utility. We note that there
is no analogous NIIRS for spectral imagery (aside from the
multispectral image interpretability rating scale [5], which is
an extension of NIIRS using human image analysts to multi-
spectral images and does not apply to the higher dimensionality
hyperspectral imagery).

While much research effort has gone toward evaluating spec-
tral algorithm performance, an open and interesting research
topic is the general assessment of image utility for a partic-
ular spectral image. We note that the assessed utility will be
influenced by factors at every step of the image chain, from the
scene being imaged to the information to be extracted from the
image. Fig. 1 shows some of these factors in a simple manner,
but in general, they may be lumped into two groups: those
pertaining to the acquisition of an image (scene, atmosphere,
and sensor) and those associated with extracting information
from the image (information extraction approach and desired
information). Note that an image represents a sampling of

the infinite image acquisition space. Our perspective in this
research is that we begin with an image and therefore do not
have control over the parameters that govern image acquisition.
Our control begins with the information extraction processes,
and it is here that we seek to define the concept of image utility
based on a specific application.

D. Objectives

Our goal is to develop a method to assess the utility of
any spectral image for subpixel target detection and apply the
methodology to real airborne hyperspectral images. We choose
subpixel target detection because it is a challenging application
with performance metrics that are readily adaptable to an image
utility metric. Thus, referring to Fig. 1, we take an image,
which represents a unique and fixed combination of scene,
atmosphere, and sensor parameters, and apply our image utility
assessment methodology to the image in order to label it with a
utility metric. The generation of our utility metric rests on our
ability to control the parameters in the information extraction
block of Fig. 1 and then summarize their effect on subpixel
target detectability. The rest of this paper is organized as fol-
lows: Section II discusses the theory and implementation of our
spectral image utility assessment approach, Section III presents
the assessed utility of six hyperspectral images collected by
four airborne imaging spectrometers, and Section IV offers
concluding remarks and future direction.

II. APPROACH

A. Methodology for Assessing Spectral Image Utility

In target detection applications, the performance of an al-
gorithm operating on a specific image for a given target is
typically described using the receiver operating characteristic
(ROC) curve. The ROC curve expresses the PD for a range
of probabilities of false alarm. The probabilities plotted in the
ROC curve are derived from the output of the target detection
algorithm. The ROC curve will serve as the point of departure
for developing our spectral image utility metric.

In order to generate the ROC curve, the output of the detec-
tion filter is needed for both target absent and target present
cases. However, the target present case will be unattainable
unless we have ground truth about the target locations in the
image. Furthermore, if the target is only present in a small
number of image pixels, then the estimate of the PD will result
in larger ROC curve confidence intervals [6]. Finally, if the
target is not present in the image, then we do not have a
target present case and cannot evaluate detection performance.
Given our goal of assessing the utility of any image, these
constraints must be considered the norm. In order to overcome
these challenges, we adopt ideas from [7] and [8] to fractionally
implant a target spectrum in every spatial pixel of the image in
order to generate the target present case. We call this method of
assessing image utility for subpixel target detection applications
the target implant method. The resulting ROC curve is a sum-
mary of the overall detectability of the implanted target across
the entire image. The target implant method offers a flexible
means to assess the performance of detection algorithms for a
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wide variety of targets and enables the calculation of a spectral
image utility metric for images with no targets, limited targets,
or no target ground truth.

Fig. 2 shows an overview of the target implant method for
assessing spectral image utility in the target detection task. The
problem is posed as a binary hypothesis test. The top left part
of Fig. 2 illustrates the operations necessary to obtain the filter
output for each of the hypotheses (cases). Let the spectral image
have K spectral channels, so that a pixel at a given spatial
location in the image is represented as the K × 1 vector x. We
create the target absent case by applying the detector operator
D to each pixel of the image

yTA = D(x). (1)

The scalar yTA is the output in the target absent case at one
pixel location. The target present case is created by applying the
detector to each pixel location of the original image in which the
K × 1 target vector has been implanted, resulting in the scalar
output yTP

yTP = D(xTP). (2)

The implantation of the target is accomplished in a fractional
manner using the prescribed subpixel fraction f in each pixel
of the image as

xTP = ft′ + (1 − f)x. (3)

The K × 1 implanted target pixel vector xTP is created by
first realizing a K × 1 random vector t′ from a normal random
process described by the statistical parameters of the K × 1
target mean vector t and K × K covariance matrix ΣT . These
parameters are drawn from a reference library created by care-
ful collection of known target pixel vectors from 210 band HY-
perspectral Digital Imagery Collection Experiment (HYDICE)
imagery exhibiting unimodal normal statistics [9]. This target
vector variability is a departure from the target implant method
described in [8], which treats the target deterministically rather
than stochastically. This modification has been adopted to better
reflect the variable nature of target vectors of the same type.
The random target vector t′ is then mixed fractionally with
every data pixel to the specified subpixel mixing fraction f .
The subpixel mixing fraction may be given a physical meaning
because it represents the area ratio of target to image pixel area
projected to the ground. If we assume a square target and square
image pixels, then the fraction may be expressed in terms of the
linear dimension of the target l and the linear dimension of the
ground resolved distance (GRD)

f =
l2

GRD2 . (4)

The right side of Fig. 2 shows the target absent and tar-
get present probability density functions (PDFs) p̂(yTA) and
p̂(yTP), respectively, which are estimated from the detector
output histograms for the entire image. Integrating the PDF
between a given threshold value T and infinity yields a prob-
ability. The integral of the target absent PDF is called the
probability of false alarm (PFA), representing the probability

Fig. 2. Target implant method.

that a pixel will be classified as a target when it is really not, and
the integral of target present PDF is called the PD, representing
the probability that a pixel is correctly classified as a target

PFA =

∞∫

T

p̂(yTA)dyTA PD =

∞∫

T

p̂(yTP)dyTP. (5)

In target detection, it is the relative relationship of these
two probabilities, which expresses the goodness of a particular
detector or detection scenario, with the most desirous situation
being one in which a high PD is achieved at low PFA. The
ROC curve, shown on the bottom left side of Fig. 2, captures
this relationship. The ROC curve is obtained by plotting PD
against PFA for each threshold setting. A ROC curve produced
by a perfect detector would consist of a PD of one for all PFAs,
a situation created by target absent and present PDFs with no
overlap. At the other extreme, a ROC curve associated with a
useless detector would consist of a straight line between the PD,
PFA pairs (0,0) and (1,1) and correspond to complete overlap
of the target absent and present PDFs.

B. Subpixel Target Detection Algorithms

Obviously, a key parameter in the assessed utility of a spec-
tral image is the specific detection operator D(·). The choice
of specific detector is driven by user requirements, and perfor-
mance will be determined by target and background variability,
pixel composition (pure or mixed), and how the detector ac-
counts for these factors [10]. In the spirit of affording maximum
flexibility to the image analyst in defining utility, we incor-
porate three detectors into the assessment methodology. The
detectors require little a priori knowledge about the image, such
as knowledge of the background signature, but do require that
a reference library containing a target vector is available [11].

The first detector is the spectral matched filter (SMF), be-
cause it is linear, reliable, and simple. The SMF is similar to
the constrained energy minimization filter of [12] but differs in
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that it uses the covariance matrix and subtracts the image mean
vector µ from the target and background vectors. This detector
is constructed with the K × K inverse image covariance matrix
Σ−1 and a K × 1 target mean vector t from the spectral library

DSMF(x) =
(t − µ)T Σ−1(x − µ)
(t − µ)TΣ−1(t − µ)

. (6)

The filter operates on each image pixel (the K × 1 pixel vector
x with the data mean vector subtracted) and creates a scalar
result representing the relative degree to which the pixel vector
matches the target vector.

The second detector is the nonlinear adaptive coherence/
cosine estimator (ACE), which is derived from the generalized
likelihood ratio test approach [13]–[15]

DACE(x) =

(
(t − µ)TΣ−1(x − µ)

)2

((t − µ)TΣ−1(t − µ)) ((x − µ)TΣ−1(x − µ))
.

(7)

The numerator of this detector is the squared Mahalanobis
distance between the demeaned image pixel and the demeaned
mean target vector. Both the SMF and ACE employ this
distance, but the action of the denominator leads to different
interpretations for each detector. In [13], it is shown that, in a
whitened space, the SMF represents the distance between an
image pixel vector and the target subspace whereas the ACE
may be thought of as the angle between them.

Unlike SMF and ACE, the third detector was not designed to
account for the variability of the image background or target.
It treats the image and target vectors deterministically and
assumes that they are spectrally pure. It is also simple and may
be applied without any estimation of image statistics. It is the
popular spectral angle mapper (SAM) expressed as

DSAM(x) =
tTx

(tTt)1/2(xTx)1/2
. (8)

The output of the detector is the cosine of the angle between
the image test pixel and the mean target vectors. Note that the
image mean vector is not subtracted as in SMF and ACE.
We expect that SAM will have difficulty in our application of
subpixel target detection but include it as a reference baseline.

C. Summary Utility Metric

The target implant method of assessing utility offers great
flexibility because a wide variety of target, target implant
fraction (target size), and algorithm choice combinations may
be considered for a single image. Each unique combination
represents a different target detection scenario and results in
a ROC curve, which summarizes the probability of detecting
the specified target over all false alarm probabilities across
every pixel of the image. In this manner, each ROC curve
describes the overall utility of the image for a particular target
detection scenario. Because the ROC curve is generated by
the target implant method which gives independent and equal
consideration to every image pixel, it is a desirable means of
assessing the utility of many images on a consistent basis.

Our stated goal is to assess the utility of any spectral image
for the subpixel target detection application, which implies
that we would like to consider more than just one specific
target detection situation in arriving at a utility metric. The
target detection parameters that we control in the target implant
method are the specified PFA at which we want to operate the
detection threshold, the particular target we seek, the amount
of target implanted in each pixel (which may be considered to
be the linear dimension of a square target), and the detection
algorithm we use. We seek a means of summarizing a range
of target detection scenario parameters into a single metric that
will describe how useful a particular image is for the subpixel
target detection task.

In order to summarize utility over a range of PFAs, we em-
ploy the area under a ROC curve over a PFA interval of interest.
The area under curve (AUC) is a widely used figure of merit for
detection performance from medical diagnostics [16]. In target
detection for spectral images, the operational range of PFA will
tend to be rather low, since usually, only a small number of
false alarms are acceptable even with many image pixels. In
order to better represent this desire to operate at low PFAs,
we apply a weighting function z(PFA) to the calculation of the
AUC. A simple weighting function is a rectangular window that
applies equal weight to all PFAs in a desired operating range
(from the lowest achievable PFA to the specified PFA) and zero
elsewhere. Any weighting function may be applied to meet the
specific requirements of the particular target detection scenario,
offering great flexibility. The integral version of the utility is
represented as

Utility (t, f,D(x), PFA)

=

1∫
0

z(PFA) · PD (t, f,D(x), PFA) dPFA

1∫
0

z(PFA) dPFA

. (9)

Note that the utility is a function of the target type, implant
fraction, detector, and PFA by virtue of PD dependence on these
factors. In practice, a discrete approximation to this integral is
calculated. Note also that the utility is the AUC realized for a
particular detection scenario normalized by the AUC associated
with a perfect detection situation (modulated by the window
function). This has the effect of transforming our AUC into
a number between zero and one, thus allowing us to easily
compare results in a relative rather than absolute fashion, and
on a scale that is bounded like NIIRS.

Using (9), we may generate the utility associated with our
PFA range of interest for one target, one fraction, and one
detector. If we vary the target, fraction, and detector parameters
over a range to create a more robust target detection scenario,
we would like to be able to summarize the utility over this
range in order to make a statement about the generalized utility
of the image. In order to give maximum flexibility to the user
in defining utility based on his or her unique requirements, we
offer the ability to condense the utilities resulting from a range
of parameters to a single summary metric or to leave the ROC
areas as an ensemble from which the user can select those of
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Fig. 3. Spectral image utility assessment and prediction.

most interest. The simplest approach to attaining a summary
metric is to form a weighted summation of utilities over all L
targets, M implant fractions, and N detectors. This situation for
the summary utility Usummary is shown as

Utilitysummary (Utility (t, f,D(x), PFA))

=
N∑

k=1

wk

M∑
j=1

wj

L∑
i=1

wiUtility (ti, fj ,Dk(x), PFA) .

(10)

The summary utility metric is a function of the utility for the
combination of detection scenario parameters, which have been
explicitly indexed using i for the target, j for the implant frac-
tion, and k for the detector. The selection of an appropriately
normalized weighting function wi, wi, wi to achieve the desired
selectivity in targets, fractions, or detectors of interest would
allow the user to tailor a utility metric best suited to his or her
purposes. The final result is a single scalar between zero and
one, which represents the degree of utility of a particular image
in fulfilling a user-defined target detection scenario(s).

D. Experimental Design

We implement our utility assessment methodology in the
manner shown in Fig. 3. The input image is assumed to be
in the reflectance domain in the visible/short-wave infrared
portion of the spectrum (0.4–2.5 µm). Any spectral image
may be input, provided that we know the spectral response
function of the sensor that acquired the image so that we
can match the reference library target spectrum to that of the
image. Six images, representing a range of spatial, spectral, and
radiometric resolutions, were chosen from four different sensor
types. Four of the images were from the same type of sensor
(two from each) in order to also include different scene content
for the same sensor type.

For this paper, we specify the four parameters that corre-
spond to the target detection scenario as follows: four targets,
30 subpixel target implant fractions, three detection algorithms,
and a specified PFA range from the lowest realizable PFA to
a specified PFA of 5 × 10−4. Thus, for each image, we have

Fig. 4. Target mean spectra with ± one standard deviation.

360 utilities that represent a sampling of the infinite target
detection scenario space. The four library target spectra were
chosen to be representative of both easy and difficult target
types. The tan fiberglass and green paint spectra are categorized
as “difficult” because they are spectrally flat, dark, and have a
relatively large amount of class variability. The tan fabric and
green nylon are “easy” because they have large spectral contrast
and relatively low class variability. Fig. 4 shows the mean
spectra of the targets along with ± one standard deviation. The
target implant fractions were chosen in a manner that provided
30 samples across the range from 0.06% to 100%, although the
primary consideration was to select fractions that corresponded
to a range of target sizes relative to the GRD of the particular
image. The smallest target size considered was 0.05 m, and the
largest was 20 m. The three detectors considered were the SMF,
ACE, and SAM.

E. Image Preprocessing and Descriptions

There are several considerations and preprocessing steps
required before employing the image utility assessment method
described earlier. First, the image must be in reflectance space
in order to employ the reference library target spectra descrip-
tions, which are given in reflectance. Although we could use
a radiative transfer model to forward propagate the target into
radiance space and then operate on a radiance image, all of
the parameters needed to do the forward propagation may not
be available in general. Second, we need to operate on those
spectral channels free of atmospheric absorption bands, as these
may cause spurious responses to the detector. Thus, the spectral
channels affected by atmospheric absorption bands must be
removed by either using information included with the image
header file or estimated directly from the image spectra. Third,
we do not remove or limit physically implausible reflectance
pixel vectors resulting from atmospheric compensation inaccu-
racies, although we could employ such preprocessing if needed.
Fourth, we are not concerned about targets that may be in the
image. If they are present, it will decrease the utility, since they
will artificially inflate the target absent detector output, but we
cannot assume a priori knowledge of targets in the image.

Six spectral images were considered for utility assessment.
The two 320 × 960 spatial pixel HYDICE images were
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Fig. 5. (Top left) HYDICE FR I run 05. (Top center) DR run 03. (Top right)
MISI RIT. (Bottom left) HyMap Cooke City. (Bottom center) AVIRIS Moffett
Field. (Bottom right) Lunar Lake.

collected in 1995 during very well-controlled experiments at
a sensor altitude of 5000 ft. Feature space transformations
removed atmospheric absorption bands, resulting in 144 bands
for the Desert Radiance II (DR II) run 03 image and 145 bands
for the Forest Radiance I (FR I) run 05 image out of the original
210. Both images were collected with 0.85-m GRD and an aver-
age spectral resolution of 10 nm, covering a spectral range from
397–2496 nm. Atmospheric compensation using in-scene cali-
bration panels and the empirical line method (ELM) produced
reflectance images. The FR I image is shown on the top left part
of Fig. 5. Two airborne visible/infrared imaging spectrometers
(AVIRISs) were collected at a sensor altitude of 20 000 m
for a 20-m GRD. Retained over the range of 370–2506 nm
at a 10-nm average spectral resolution were 183 of the
224 bands. The bottom center part of Fig. 5 shows a scene of
Moffett Field, CA. The other AVIRIS image is a desert scene
from Lunar Lake, NV. Both AVIRIS images are 512 × 614 pix-
els, and they were atmospherically compensated to reflectance
values. A 512 × 512 pixel subset of an image from the HyMap
hyperspectral scanner of Cooke City, MT, was collected in 2006
at an altitude of 12 400 ft above sea level for a GRD of 3 m.
The sensor has 126 spectral bands, covering the 454–2496-nm
spectral region with a 15-nm average spectral bandwidth.
Ninety six of the 126 bands are retained, and the image was
atmospherically compensated using the HYCORR algorithm.
The HyMap image is shown in the bottom left part of Fig. 5.
The sixth image is 332 × 1272 pixels in spatial extent, and it
was collected by the modular imaging spectrometer instrument
(MISI) over the Rochester Institute of Technology (RIT) cam-
pus, Rochester, NY. The GRD is approximately 3 m and of the
35 channels in the 408–738-nm spectral range; 31 are used for
this analysis. The spectral resolution is 10 nm, and atmospheric
compensation was accomplished via the ELM.

We selected these six images because they represent a sam-
pling of the image acquisition parameters discussed in Fig. 1.
The six images have varying scene contents, ranging from rela-
tively simple and uniform desert scenes to more complicated
and cluttered urban scenes. Three different GRDs are repre-

Fig. 6. Utility of HYDICE FR I for four target types using the SMF detector.

sented, each exhibiting a different degree of spectral signature
mixing and background variability. There are four spectrom-
eters represented, with different image formation approaches
(line scanner and pushbroom), signal-to-noise ratios (from high
values for AVIRIS to relatively lower for MISI), and image
artifacts. The images were atmospherically compensated using
different methods, each of which introduces its own source
of noise to the observed pixel vectors. While [17] presents a
more comprehensive examination of more images and image
characteristics, this paper deals with spectral images that span
a range of image acquisition parameters.

III. RESULTS AND DISCUSSION

We emphasize two major themes with these results. First, we
illustrate the varying degree to which image utility is dependent
on target detection scenario parameters. Second, we show that
the methodology we propose for assessing image utility pro-
vides a flexible tool that may be adopted to meet the specific
requirements of any user.

The first target detection scenario parameter that we control
is the target type. Fig. 6 confirms our intuition about “easy”
and “difficult” targets by plotting the utility associated with the
SMF detector for the four targets as a function of the target
size for HYDICE FR I image. It is apparent that the green
nylon and tan fabric are easier to detect and therefore produce
a higher utility for this particular image. The first significant
utility for detecting these targets occurs at 0.2–0.3 m, while
it does not occur until 0.5–0.7 m for the tan fiberglass and
green paint target types. Thus, the choice of target type creates
a significant difference in the utility assessed for a particular
image. We have chosen to portray the utility as a function of
target implant size rather than implant fraction because of the
more intuitive nature of the linear dimension rather than area
fraction, assuming square targets and image pixels. All utilities
in this and subsequent plots and tables have been calculated for
PFAs of less than 5 × 10−4.

If we examine detector algorithm choice on the same image
using only the tan fabric target, we see that the detector plays
a very large role in the assessed utility. Fig. 7 shows that this
image has the highest utility when the target detection scenario
includes the ACE detector and the lowest when using the SAM.
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Fig. 7. Utility of HYDICE FR I for three detectors using one target.

Fig. 8. Summary utility for six images plotted against target size.

While this is not surprising, the point to note is that the choice
of algorithm has a substantial impact on the assessed utility of
the image. It is a factor that outweighs the particular target type.

The flexibility of the target implant method of assessing
utility derives from the fact that varying levels of specificity
may be pursued to address specific user questions. For example,
if the primary interest was in ascertaining the utility of images
for detecting a certain type and size of target, then the user
could focus on only those utilities associated with size and
type (e.g., green vehicles of size less than 5 m). On the other
hand, if the primary interest was to compare images for the
utility of general target detection, then the user would seek to
average the utility associated with all targets, algorithm types,
and target sizes. Fig. 8 shows the utilities associated with this
most general scenario in the legend and uses the plot to express
the utility averaged over the four targets and three detectors as a
function of target size. In calculating the summary utility metric
associated with each image, we have made the assumption
that targets larger than the GRD of the sensor will be treated
as independent occurrences of a 100% full pixel target. In
other words, beyond a target size corresponding to the GRD
of the sensor, no further improvement of utility is possible. The
rationale for this approach is that the detectors treat each pixel
independently and are not designed to use spatial information to
increase the detection. Thus, it is evident in Fig. 8 that HYDICE
utility flattens out at 0.85 m, HyMap and MISI at 3 m, and

AVIRIS at 20 m. The summary utility indicates that the HyMap
image has the highest utility for detecting these four targets
ranging in size from 0.05 to 20 m using the SMF, ACE, and
SAM at a PFA of 5 × 10−4, and the AVIRIS Moffett Field scene
has the lowest. Thus, even though AVIRIS is a very high quality
sensor, the large GRD and resulting mixing of spectra within
each pixel make it very challenging for this sensor to detect
small targets. Had we defined our target detection scenario
differently, the results might be different. To illustrate this last
point about the effect of how the target detection scenario is
defined upon the assessed utility, consider that, if we were only
interested in finding 20-m targets (under the assumption that
each pixel is treated independently by the detector), AVIRIS
would then provide the most useful images.

To further reinforce the point that the target detection sce-
nario definition affects the utility metric, consider that we
repeat our summary metric but, this time, averaging the target
into “easy” (tan fabric and green nylon) and “difficult” (green
paint and tan fiberglass) categories. Table I shows the resulting
utilities over all detectors and target sizes. While it is clear
that the HyMap image shows the highest utility for both types
of targets, the utility of the HYDICE image, when assessed
using easy targets, is very close to that of HyMap, whereas it
is significantly less useful than HyMap for difficult targets.

It is informative to examine the image utility for targets of
particular sizes. Table II presents the utility averaged over all
targets and algorithms for targets up to four sizes.

We note that the HYDICE images have the highest utility for
targets of less than 2 m while the HyMap image has the highest
utility when assessed for targets of larger than 2 m. The small
GRD of HYDICE images makes them useful for finding small
targets. It is not clear what contributes to the high utility of the
HyMap images for larger targets, but it is indicative of the fact
that the image background composition is such that the four
targets are very detectable using SMF, ACE, and SAM.

The superior performance of HyMap, with its larger GRD
and coarser spectral resolution than HYDICE, is somewhat
counterintuitive but reveals some interesting aspects of the
target implant utility assessment method. Although the sensor
characteristics suggest that HYDICE should provide higher
utility, this ignores the important aspect of the scene content
as a factor for consideration. Both of the HYDICE scenes had
targets resident in them, whereas the HyMap scene did not. We
have found that this utility metric reports lower utility in the
case of targets present because of the false alarms created by
the presence of targets in the “target absent” case. When the
targets are removed from the HYDICE images using a target
mask, the utility is higher than that of the HyMap image. We
chose to leave the targets in the image, however, to represent
the more realistic situation in that an image analyst would not
have a priori knowledge of targets in the image.

IV. CONCLUSION

This paper presents a novel methodology to assess the util-
ity of any spectral image for the subpixel target detection
application. More generally, it offers a framework by which
to define the image utility of spectral images and addresses
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TABLE I
SUMMARY UTILITY AND TARGET DIFFICULTY

TABLE II
SUMMARY UTILITY AND TARGET SIZE

the issue of how spectral image utility might be assessed for
any application. The premise for the value of a spectral image
utility metric is based on the success of NIIRS for panchromatic
images. This paper addresses the fundamental difference by
which information is extracted from panchromatic and spectral
imagery by incorporating a means of adapting spectral process-
ing algorithm performance measures into a measure of image
utility. The resulting methodology and spectral image utility
metric for the subpixel detection application are used to explore
the effect of image acquisition and target detection scenario
parameters on the utility of six spectral images.

This paper applies the target implant method to assess the
utility for the realistic situation of dealing with images that
may contain no targets, a small number of target pixels, and
have no corresponding ground truth. The target implant method
creates its own binary hypothesis test and considers the effect
of a random target vector fractionally implanted in every image
pixel as the target present case. This approach enables the
investigation of the detectability of any target for which a
reference library description exists at any subpixel fraction in
any image. It also offers a self-contained automated method of
assessing the utility of an image in a summary sense for a range
of target types, size, detectors, and detection operating points.
It affords the investigation of the role of the target relative to
the image scene spectral content and associated atmospheric
compensation and sensor parameters. Users may specify an
input reflectance image and specific parameters of the target
detection scenario, as well as the degree of granularity desired
in the resulting image utility, thus affording wide latitude in
tailoring the resulting utility metric to their specific information
requirements.

Six images, four targets, 30 target sizes, and three detectors
are used to sample the infinite image acquisition and target
detection scenario space in assessing the utility of the images.
Results confirm that the HYDICE images are the best for
detecting targets of less than 2 m, and the HyMap image is best
for detecting targets larger than 2 m. This is consistent with the
GRD of the corresponding images. In general, the ACE detector
seems to offer the most consistently high image utility across all
images, and SAM offers the lowest, as expected.

Future work will seek to better understand the sensitivity of
the assessed utility to image chain parameter variations and
investigate the robustness of different image utility prediction

approaches. While at this point the results are dependent on the
specific images and targets under investigation, we hope that,
by further exploration of a range of images and targets, we can
generalize the results to classes of images and targets.
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