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An Analytical Model of Earth-Observational 
Remote Sensing Systems 

John P. Kerekes and David A. Landgrebe 

Abstract-The field of optical remote sensing for the analysis of 
Earth’s resources has grown tremendously over the past 20 years. With 
increasing societal concern over such problems as ozone layer depletion 
and global warming, political support is likely to continue that growth. 
NASA has recently begun a program that will use state of the art sensor 
technology and processing algorithms to gain ever more detailed data 
about our Earth. To better understand the remote sensing process, 
research has begun on modeling the process as a system and investigat- 
ing the interrelationships of system components. This paper presents a 
system model for the remote sensing process and some results that yield 
insight into its understanding. Key results include interrelationships 
between the atmosphere, sensor noise, sensor view angle, and scattered 
path radiance and their influence on classification accuracy of the 
ground cover type. Also included are results indicating the trade-offs in 
ground cell size and surface spatial correlation and their effect on 
classification accuracy. 

I .  INTRODUCTION 
EMOTE sensing of the Earth’s resources from space- R based sensors has evolved in the past 20 years from a 

scientific experiment to a commonly used technological tool. 
The U.S. Landsat [l], [ 2 ]  and the French SPOT [3] satellites 
along with many others have provided a wealth of informa- 
tion about our Earth [4]. NASA has recently begun an 
international program called Earth Observing System (EOS) 
to better understand our Earth as a global system [5]. This 
program will use a complex array of highly sophisticated 
sensors mounted on polar orbiting platforms to gather de- 
tailed data. These sensors will advance the state of the art 
substantially. 

The goals of our research have been twofold. First, it was 
desired to increase understanding of the remote sensing 
process through its modeling as a system. By constructing 
these models we document our knowledge of the remote 
sensing process as well as provide a sophisticated testbed 
upon which to build and test theories. 

The second goal of our work has been in direct prepara- 
tion for the use of the next generation of remote sensing 
satellites. In the use of these instruments scientific investiga- 
tors will be able to specify many of the observational param- 
eters. It will become increasingly important for the diverse 
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group of earth scientists who use these tools to have better 
information available to them about the effects and trade-offs 
of these observational parameters. Through the use of a 
system-wide model we can gain insights into these effects 
and aid in the planning and execution of the scientific 
experiments. 

This paper presents a system-wide model for the study of 
optical remote sensing systems. In the next section we de- 
scribe the type of remote sensing systems considered. This is 
followed by a description of the analytical system model used 
in our research. Results of the use of this model in the 
analysis of optical remote sensing systems are then presented 
before concluding with a summary. 

11. REMOTE SENSING SYSTEMS 
In our research, the term “remote” sensing is used in the 

context of satellite- or aircraft-based imaging sensors that 
produce multispectral digital images of the surface of the 
Earth for land cover or Earth resource analysis [6]. The 
imaging sensor covers only the reflective portion of the 
optical spectrum with wavelengths approximately from 0.4 
p m  to 2.4 pm. This context includes many of the current and 
near future remote sensing instruments such as Landsat MSS 
and TM, SPOT, AVIRIS [7], MODIS [8], and H I R E  [9]. 
Land cover delineation using the image data represents a 
significant application of the technology. 

A conceptual description of a remote sensing system is 
given in pictorial form in Fig. 1. This figure gives an overall 
view of the remote sensing process starting with the illumina- 
tion provided by the sun. This incoming energy passes 
through the atmosphere (where it is partially absorbed and 
scattered) before being reflected from the Earth’s surface in 
a manner presumably indicative of the surface material and 
its condition. The reflected light then passes again through 
the atmosphere before entering the input aperture of the 
sensing instrument. 

At the sensor, the incoming optical energy is sampled 
spatially and spectrally in the process of being converted to 
an electrical signal. This signal is then amplified and quan- 
tized into discrete levels producing a multispectral scene 
characterization that is then transmitted to the processing 
facility. 

At the processing stage, geometric registration and cali- 
bration may be performed on the image in order to be able 
to compare the data to other data sets. Feature extraction 
may also be performed to reduce the dimensionality of the 
data and to increase the separability of the various informa- 
tional classes in the image. Lastly, the image undergoes a 
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Fig. 1 .  Remote sensing system 

classification and interpretation stage, most often done with 
a computer under the supervision of a trained analyst using 
ancillary information about the scene. 

The entire remote sensing process can be viewed as a 
system whose inputs include a vast variety of sources and 
forms. Everything from the position of the sun in the sky, the 
quality of the atmosphere, and the spectral and spatial 
responses of the sensor to the training fields selected by the 
analyst, etc., will influence the state of the system. The 
output of such a system is generally a spatial map assigning 
each discrete location in the scene to an appropriate land 
information class. Other outputs may be the amount of area 
covered by each class in the scene or the classification 
accuracy, measured by comparing the resulting classified 
map with the known ground truth of the scene. 

In a recent paper we presented an approach to studying 
these systems using simulation [lo]. This approach is useful 
when simulated images are desirable for processing algo- 
rithm study or when detailed spatial effects are necessary for 
the model. In the study of interrelated parameter effects, the 
variations introduced by the random number generators re- 
quire many iterations of the simulation to produce consistent 
results, and thus such an approach becomes computationally 
quite intensive. 

A simpler and much less computationally intensive ap- 
proach is one of parametric system analysis. Such a paramet- 
ric system model was presented in reference 1111. Much of 
the present work builds on the model developed there. The 
model we propose varies from this previous work in several 
important points. As in their work, we use field or laboratory 
spectra for the surface class reflectance statistics; however, 

Solar and Sensor Sensor 
Spatlal spectra1 4rH-H-Z-b Effects 

Class k 

Statistics 
Reflectance Atmospherlc 

Sensor Feature Modified 
Noise Extraction Class k 
Model (Optional) Statistics 

Fig. 2. System effects block diagram. For each class k of the K classes 
defined in the scene, the class mean vector and covariance matrix are 
modified by the function in each of the blocks. 
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Fig. 3. Accuracy estimation. A pairwise error estimate is made from 
the modified class statistics and then combined to form an overall 
classification accuracy estimate. 

we introduce the well-developed atmospheric model LOW- 
TRAN 7 [12] to produce a realistic radiance function. Also, 
the sensor noise model implemented in our work includes 
signal dependent shot noise and calibration error. The sys- 
tem model has been implemented in the context of the EOS 
environment in order to apply the ideas to an upcoming 
system. Spectral reduction has been applied after the atmo- 
spheric and noise effects have been included and a multiclass 
error estimator, based on the Bhattacharyya distance mea- 
sure and developed in [13], is used to estimate classification 
error. The following section describes this model in detail. 

111. ANALYTICAL SYSTEM MODEL 
A. Model Oueruiew 

The analytical system model was built in the context of 
ground cover classification using multispectral statistics and 
pattern recognition techniques with the goal of investigating 
the effect of diverse system parameters on classification 
accuracy. The model modifies the statistics of each class by 
system effects before computing an estimate of the classifica- 
tion accuracy based upon an interclass distance measure. 
Fig. 2 shows a block diagram of the system effects applied to 
each of the K classes, while Fig. 3 shows the estimation of 
the classification accuracy based on these modified class 
statistics. 

A brief description of the model follows. Reference [141 
contains a full description and a listing of the Fortran imple- 
mentation of the model. Also, [15] presents an application of 
the model to the study of the upcoming HIRIS instrument. 

B. Surface Reflectance Statistics 

The surface reflectance is assumed to be spectrally multi- 
variate Gaussian with a spatial correlation described by a 
separable exponential model [ l l ] .  The multivariate Gaussian 
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assumption has been shown to be appropriate for the analy- 
sis of remotely sensed data [201. 

For the examples given in Section IV, the spectral re- 
flectance statistics utilized were computed from a database 
of field spectra [17] with samples across the optical spectrum 
from 0.4 to 2.4 p m  (with wavelength intervals of 20 to 50 
nm). However, other sources of multivariate data (e.g., 
AVIRIS [7] airborne sensor data converted to reflectance) 
could be used as well. To take full advantage of the spectral 
resolution available in the atmospheric model and HIRIS 
sensor, the data is first interpolated to 10-nm wavelength 
spacing. Thus, for each class k ,  the reflectance mean vector 

and the covariance matrix C k  will have M = 201 dimen- 
sions. 

The scene is spatially modeled as having cells of constant 
reflectance (Lambertian assumption) with spatial correlation 
from cell to cell. The cross-correlation function for wave- 
lengths m and n within a class is shown in (1). 

Here, .r and q are the across- and along-track cell lag 
values for the spatial correlation function. This form yields 
spatial cross-correlation coefficients pmn, for across the 
scene, and P,,,,~ for down scene, as shown in (2) and (3). 

pmn,w = 

P m n , y  = 

For the model implemented in this research, the cross-cor- 
relation has been assumed to be constant across all spectral 
wavelengths and for all classes. 

C. Solar and Atmospheric Effects 

The solar and atmospheric effects model converts the 
scene reflectance to the spectral rldiance received by the 
sensor. The computer code Lowtran 7 [12] is used to com- 
pute the radiances and transmittances. Equation (4) shows 
the form of the model for the spectral radiance vector LA 
received by the sensor. 

L A =  L A , S  * + LOh,Path + [ L!i,Path - L:,Path] * xA. (4) 

Radius of Sensor PSF 

across-!rack 
x - direction - 

Scene Cell 

along-track 
y -direction 

Fig. 4. Spatial model configuration example for cro = 1 scene cell. 

respectively. LA,,, the spectral radiance reflected from a 
perfectly reflecting surface, is as shown in (5). 

Here EA,Tota, is the total solar spectral irradiance vector 
incident at the surface and TA,Atm is the spectral transmit- 
tance vector for the path from the surface to the sensor 
(calculated by Lowtran). The total irradiance is made up of a 
direct component (calculated by Lowtran) and a diffuse 
component. An empirical relationship was developed and 
used in [lo] to compute the total irradiance from the direct 
component and is shown in (6): 

K ,  is the diffuse irradiance constant with values ranging 
from 0.75 to 1.25 for increasing adjacent surface reflectance, 
and .rA is the total optical path length. BsOlar is the solar 
zenith angle as measured from directly above the scene. 

After the application of the atmospheric effects function, 
the mean and covariance of the signal radiance are as 
follows. The mean spectral radiance is given by (7): 

(7) 
Ll-0 A,Path is the difference between the path radiances for a 
surface albedo of 1 and 0. The spectral radiance covariance 
matrix CLA is derived as follows for each row m, column n 
entry UL,mn: 

The symbol * is used here to denote a term by term 
multiplication of the spectral vectors. X is the surface re- 
flectance vector in the sensor ground instantaneous field of 
view (IFOV), while X ,  is the avtrage reflectance around this 
area and represents the contribbtion of the adjacent surface 
to the received radiance. For this model, the adjacent re- 
flectance X ,  is considered to be the average reflectance of 
all K classes. It is also considered to be uncorrelated with 
the reflectance within the sensor IFOV since it represents an 
average over a broad spatial area. L:,Path and L!,path are the 
path spectral radiance vectors for surface albedos of 1 and 0, 

The subscript m denotes the mth entry of the reflectance 
and radiance vectors. Also, uX,,,,, is the mnth entry of the 
reflectance covariance matrix C k ,  while U,,,,, is the mnth 
entry of the covariance matrix CA of the averaged re- 
flectance, which is given in (11). 

1 
K 2  

CA=-(C l+c,+ . . ’  

In the derivation of CA,  the reflectances of the classes 
averaged together are considered to be uncorrelated with 
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each other since they are spatially separated as fields in the 
scene. 

D. Sensor Spatial Effects 

The spatial effects function uses the results of Mobasseri 
[11] to modify the spectral radiance covariance matrix. The 
separable exponential spatial correlation model of (1) is 
assumed for the scene, along with a Gaussian point spread 
function (PSF) for the sensor as shown in (12). Fig. 4 shows 
the relationship between the sensor PSF radius U, and the 
scene cell size. 

Since U, is one-half the number of scene cells (on a side) 
in the sensor ground IFOV, its value must be modified to 
reflect the change in the ground IFOV as the sensor zenith 
view angle (eview) changes. The spatial direction in which this 
occurs is dependent upon the relative azimuthal angle of the 
sensor and the ground reference axis. For simplicity, the 
sensor azimuth is defined to be 0". Thus in terms of U,,,, and 
u ~ , ~ ,  U, is projected as in (13) and (14): 

u 0 , x  = U0 (13) 

Mobasseri [11] defined a weighting matrix W, that is a 
function of the spatial model and PSF parameters. Following 
his results, the sensor spatial response modifies each mn 
entry in C L ,  as in (15): 

where 
U,",,,, = K m n u L , m n  (15) 

and erfc(.) is the complimentary error function defined as in 
(17). 

1 =  
e r fc (a )  = - / e - ' 7 / * d t .  (17) 

V G ,  

Since the spatial autocorrelation coefficients have been as- 
sumed to be constant across spectral wavelengths, the pa- 
rameter Wsmn is constant for all mn. 

Thus (15) gives a new E;, that represents the spectral 
radiance covariance matrix after application of the sensor 
spatial effects. The mean spectral radiance vector is un- 
changed by the spatial model as shown in (18): 

- 
LSh=G. (18) 

E. Sensor Spectral Effects 

The sensor spectral effects are applied by a linear trans- 
formation matrix B that converts the spectral radiance to 
the signal levels in each of the sensor image bands. The 
sensors may be of two types in our model: line scanner 
sensors such as Landsat TM [1] with spectral bands wider 
than the wavelength spacing used in the model scene, or 
imaging spectrometers such as HIRIS [9], which have the 
same spectral resolution as the model scene. For the line 

scanner sensors with L bands, this matrix is L rows by M 
columns, with each row consisting of the normalized re- 
sponse of that band to each of the M wavelengths of the 
spectral radiance. Also, each entry in the matrix is multiplied 
by AA,  the spectral resolution of the spectral radiance vec- 
tors. The resulting signals will be in terms of radiances. Thus 
this matrix B for line scanner sensors is formed as in (19). 

[ Band 1 Response 1 
(19) 

1 Band 2 Response 
B = A A  

1 Band L Response 1 
For imaging spectrometers with the same spectral resolu- 

tion as the scene (i.e., L = M ) ,  the matrix will be diagonal 
L x L with the resulting signal in terms of electrons. For 
either sensor type, the mean received signal vector is thus 
obtained by 

while the signal covariance is as shown in (21): 

M .  

- 
S =  BLS, (20) 

C, = B C S , ~ B ~  

F. Sensor Noise Model 

The sensor noise effects are modeled as zero mean ran- 
dom processes, except for the deterministic absolute radio- 
metric error eR and the detector dark current D. These 
deterministic effects are added directly to the mean signal 
vector to yield the noisy mean vector Y as in (22): 

r=(l+e,>s+ D. (22) 
The random noise sources modeled include shot noise, 

thermal noise, read noise, quantization error, and relative 
calibration error. The form of these models was discussed in 
our earlier paper [lo]. Reference [16] discussed how these 
sources of noise affect the covariance matrix of the signals 
received by the sensor. The result used here is that while 
some of the noise sources may be a function of the signal 
(shot and relative calibration error), they are still uncorre- 
lated with the signal and the variances add directly. Also, 
each noise source is assumed to be independent of the 
others and uncorrelated from spectral band to spectral band. 
Thus the signal covariance is modified as in (23): 

C Y = ( 1 + e R ) 2 C s + A t h e r m + A s h o t f A r e a d + A q u a n t + A c a l .  

(23) 

Here, the A's are diagonal matrices with each entry being 
the variance of that noise source for that sensor band. 

G. Feature Extraction 

Feature extraction is optionally applied by combining the 
sensor bands accordkg to a weighting matrix F to create the 
features with mean Z and covariance Cz as in (24) and (25): 

z=l;r (24) 

C, = F C , F ~ .  (25) 

To transform the L-dimensional vectors Y to the N- 
dimensional feature space, F is N rows by L columns of 
weighting coefficients. For a spectral feature compression 

~- 
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scheme based on combining spectral bands, these coeffi- 
cients are just 0 and 1 to appropriately skip or select the 
sensor bands. 

H. Pairwise Error and Multiclass Classification 
Accuracy Estimation 

After the class statistics of each class have been modified 
by the above functions, an estimate of the probability of 
error is made. Reference [13] discussed a pairwise error 
estimate based upon the class mean and covariance statistics 
and found it to be closely related to the actual classification 
error. Equation (26) shows this estimate of probability of 
error P,, which uses the Bhattacharyya distance B,, between 
classes k and 1 defined below. 

P,"' = erfc { m} . (26) 
The function erfc(.) was defined earlier. The Bhat- 

tacharyya distance B,, between class k and class 1 with 
mean vectors and 7, and covariance matrices E, and E', 
is given in (27): 

L A 

Reference [13] also discussed an upper bound on the 
probability of error in the multiclass case as being the sum of 
the pairwise error estimates. Thus in our model the follcwing 
estimate for the multiclass classification accuracy P, (in 
percent) is used. 

P,=lOO 1- P:' . (28) 
[ K K  k = l  l = l # k  1 

Since the summation of the pairwise errors is an upper 
bound, this estimate of the classification accuracy will be 
pessimistic in multiclass experiments. 

An error estimation technique for the multiclass multivari- 
ate Gaussian classification problem was presented by 
Mobasseri and McGillem [21]. This estimate was based upon 
class statistics also, but utilized a combined analytical and 
numerical integration technique to provide a nearly exact 
estimate of the Bayes error. This algorithm was not utilized 
in our present work due to computational considerations and 
the desire to maintain the analytic nature of the model, 
although it could be implemented as an extension. 

I. Comparison Between Analytical and Simulation Models 

The analytical model described here offers the advantages 
of being simpler and computationally more efficient than the 
simulation model described in [lo]. However, its representa- 
tion of the real world is less accurate. Table I lists several 
factors that the analytical model is not able to represent at 
present. 

These factors can be significant. The following section 
presents some results of comparing the accuracy estimate of 
the analytical and simulation models. 

TABLE I 
SYSTEM FACTORS NOT INCLUDED IN ANALYTICAL MODEL 

Size and Spatial Arrangements of Fields 
Mixed Pixels at Field Borders 
Non-Gaussian Sensor PSF 
Training Field Selection and Size 

TABLE I1 
KANSAS WINTER WHEAT DATA SET 

Location: Finney County, Kansas 
Date: May 3, 1977 

Spectral Classes Number of Fields Number of Samples 
25 658 

39 682 

Winter Wheat 

Unknown 
Summer Fallow 6 211 

Another difference between the modeling approaches is 
that the analytical model works in a parametric space, while 
the simulation model produces multispectral images that can 
be displayed and processed like real ones. This attribute of 
the simulation approach is useful for the development of 
processing algorithms when "real" data is not available or 
when images of controllable characteristics are desired. 

IV. INSIGHTS INTO THE REMOTE SENSING PROCESS 
In this section we discuss the application of the system 

model to the radiometric and classification performance of a 
typical remote sensing system. We begin by describing the 
scene and other system parameters and then compare the 
performance of the simulation and analytical models for the 
same system description. The results of investigating trends 
using the analytical model are next presented as well as 
results of investigating the interrelated effects of several 
parameters. 

A. Baseline System Description 

In this investigation of a typical remote sensing system we 
utilized a baseline scene, sensor, and processing description. 
The spectral statistics of the scene were based upon the field 
data described in Table 11. This data set was obtained from 
the LARS field database [17]. 

Table I11 shows the significant system parameters used as 
the baseline in these experiments. The sensor used was a 
model version of the HIRIS instrument. Reference [18] 
contains a full description of this model. The feature selec- 
tion was performed using the Spectral Feature Design (SFD) 
algorithm described in reference [191. 

B. Performance Comparison Between the Analytical and 
Simulation Models 

To evaluate the performance of the analytical model, a 
comparison was made to a similarly defined system using the 
simulation model. In the simulation model a square scene 
was defined and split down the middle with the Summer 
Fallow and the Unknown classes of Table I1 assigned to 
opposite sides. 100% of the samples from each class were 
used in the training and the test of the simulation Maximum 
Likelihood classifier. For each of these experiments, the 
simulation model was run five times and the resulting accu- 

I 5-;1 
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TABLE 111 
BASELINE CONFIGURATION FOR SYSTEM PARAMETER STUDIES 

Scene 
Surface MeteorologXRange 16 km 
Atmospheric Model 1976 US Standard 
Haze Parameter Rural Extinction 
Diffuse Irradiance Constant 0.84 
Solar Zenith Angle 30" 
View Zenith Angle 0" 
Ground Size of Scene Cell 15 m 
Across-Track Spatial Correlation Coefficient 0.6 
Along-Track Spatial Correlation Coefficient 0.6 

Spatial Radius 
Sensor (HIRIS MODEL) 

Analytical Model uo 
Simulation Model Ground I I  

Read Noise Level 
Shot Noise Level 
IMC Gain State 
Relative Calibration Error 
Absolute Radiometric Error 
Radiometric Resolution 

Processing 
Feature Extraction 

:ov 
1 Scene Cell 

30 m 
Nominal 
Nominal 

1 
0.5% 

0% 
12 Bits 

Six Features Derived 
From Spectral Feature 

Design Algorithm 

TABLE IV 
CLASSIFICATION ACCURACY OF BASE SYSTEM CONFIGURATION 

TABLE V 
INCREMENTS USED I N  GROUND SIZE EXPERIMENT 

Simulation Model 
Analytical Model 

88.06% 
87.78% 

_ _ .  - , . , . , . a  

0 .0  0.2 0.4 0.6 0.8 

Spatial Correlation Coefficient 

Classification accuracy versus scene spatial correlation coeffi Fig. 5. 
cient. 

racies averaged together to reduce the effects of the random 
number generators. The classification accuracy shown for the 
simulation model is the average of the two individual class 
accuracies. 

For the base system configuration shown in Table 111, the 
accuracies obtained are shown in Table IV. The values are 
within 1% of each other, indicating that, at least for this 
configuration, the simulation model and the analytic model 
predict similar performance. 

An experiment was performed to compare the effect on 
classification accuracy of the spatial model parameters. Fig. 

Ground Size of Resulting Size of Radius of Analytic 
Scene Cell Simulated Image Sensor PSF (a,) 
30 Meters 80 rows by 80 columns 0.5 cells 
15 Meters 40 rows by 40 columns 1.0 cell 
7 Meters 20 rows by 20 columns 2.0 cells 
4 Meters 10 rows by 10 columns 4.0 cells 
2 Meters 5 rows by 5 columns 8.0 cells 

5 shows the result of changing the spatial correlation coeffi- 
cient p = px = py of the scene cells. In the simulation model 
the data were synthesized to have the desired correlation 
coefficient by the use of the autoregressive model described 
in [lo]. For this experiment the ground size of the scene cells 
was held constant. 

As can be seen, the simulation model and the analytical 
model track the change in accuracy due to the spatial corre- 
lation. These curves support the work in [ I l l  on analyzing 
the effect of the spatial model on class spectral statistics 
through the weighting function described in (16). 

Another comparison experiment of the spatial model was 
performed by allowing the ground size of the scene cells to 
change and observing the effect on classification perfor- 
mance. The change in scene cell size for the simulation 
model is equivalent to changing the PSF radius of the 
analytical model. Table V presents the increments used in 
this experiment. The ground IFOV of the sensor was held 
constant at 30 m in the simulation model. The spatial corre- 
lation coefficient also was held constant. 

Fig. 6 shows the results of this experiment. At large scene 
cell sizes both models show an increase in accuracy as the 
scene cell size decreases. However, while the analytical model 
continues this trend at cell sizes less than 10 m, the simula- 
tion model shows a reduction in accuracy due to the effects 
of mixed pixels at the border between the classes and re- 
duced training set size. 
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Classification accuracy versus ground size of scene cells Fig. 6. 

TABLE VI 
SUMMARY OF RESULTS FOR SYSTEM PARAME-IER EXPERIMENTS 

System Parameter 
(Increasing) 

Scene - 
Spatial Correlation 
Meteorological Range 
Solar Zenith Angle 
View Zenith Angle 

Sensor 
PSF R a d i u y  
Shot Noise 
Read Noise 
IMC Gain 
Radiometric Resolution 
Relative Calibration Error 
Absolute Radiometric Error 

Processing 
Number of Features 

Voltage 
SNR 

No Change 
Increase 
Decrease 
Decrease 

No Change 
Decrease 
Decrease 
Increase 
Increase 
Decrease 
Increase 

Increase 

Power 
SNR 

Increase 
Increase 
Decrease 
Decrease 

Decrease 
Decrease 
Decrease 
Increase 
Increase 
Decrease 
Increase 

Increase 

Accuracy 

Decrease 
Increase 
Decrease 
Increase 

Increase 
Decrease 
Decrease 
Increase 
Increase 
Decrease 
Increase 

Increase 

C. System Parameter Effects on Radiometric and 
Classification Performance 

A sequence of experiments varying one of the system 
parameters and observing the effect on radiometric perfor- 
mance and classification accuracy was performed and re- 
ported in [14]. A summary of these results is shown in Table 
VI. The scene classes and baseline system parameters were 
as shown in Tables I1 and 111. The voltage signal-to-noise 
ratio (SNR) was calculated at the output of the model sensor 
and represents the ratio of the signal mean and noise stan- 
dard deviation levels, while the power SNR is computed as 
the ratio of the signal variance to noise variance at the 
output of the sensor. Reference [15] describes these radio- 
metric performance measures in detail. 

In Fig. 7 the results of these experiments are displayed 
quantitatively in a scatter plot to show the relationships 
between classification accuracy and SNR. A linear regression 
line is also plotted along with the resulting correlation coeffi- 
cient R 2  = 0.10. 

While there appears to be a trend of higher classification 
accuracy resulting from higher SNR, it is not very significant. 
The spatial correlation and sensor PSF radius are cases in 
point. These spatial parameters are used in the sensor model 
only to modify the signal covariance matrix, and thus they 
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Fig. 7. Accuracy versus voltage SNR for system parameter exper- 
iments. 

have no effect on voltage SNR. While their variation had a 
significant effect on both classification accuracy and power 
SNR, the effects were opposite. An increase in the correla- 
tion of the scene cells within the sensor ground IFOV leads 
to an increase in the class spectral variances through the 
weighting function of (16), and thus increased class overlap 
in the feature space and the resulting decreased classifica- 
tion accuracy. An increase in the sensor PSF radius results in 
an “averaging” of within class spectral radiance variations, 
reduced class overlap and thus increased classification accu- 
racy. The classification accuracy is ultimately dependent 
upon the relationships between the first- and second-order 
class statistics, not the particular noise level. 

D. Interrelationships of System Parameter Effects 

In this section we present results of investigating the 
interrelationships among several system parameters. These 
results provide insights into the remote sensing process mod- 
eled as a system. The analytical model was used for these 
experiments with the spectral statistics of the three classes of 
Table I1 and the system configuration of Table 111. 

In Fig. 8, we show the effect of surface dependence in the 
path radiance model for the case of no sensor noise present 
(to isolate the surface dependence effect). The dotted line 
was obtained using the atmospheric model as described in 
this paper, while the solid lie was obtained without the 
averaged reflectance mean and covariance terms in (7) 
and (10). 

Without the surface dependence of the path radiance the 
effect of the atmosphere is just a linear transformation of the 
spectral statistics, resulting in little change in accuracy even 
in hazy atmospheres. However, with the introduction of the 
adjacent surface reflectance dependence in the path radi- 
ance, the effect of hazy atmospheres on classification accu- 
racy is quite dramatic. 

The next experiment investigates the effect of the atmo- 
sphere on performance versus view zenith angle. Fig. 9 shows 
the result. In clear atmospheres the accuracy is seen to 
increase slightly with viewing angle. This occurs due to the 
averaging effects of increased ground size of the sensor 
IFOV as the sensor look angle increases. The reduced varia- 
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tion in the class spectral statistics leads to greater class 
separability and higher classification accuracies. 

In hazy atmospheres the reduced signal levels and in- 
creased additive path radiance (resulting in higher sensor 
shot noise) lead to lower accuracies at the greater view 
angles. These curves provide an excellent example of the 
interdependence of system parameter effects. 

Fig. 10 shows a complex relationship between the spatial 
correlation and size of scene cells. This graph explores the 
effect on classification accuracy for a fixed sensor IFOV 
(e.g., 32 m), where the size of the scene cells of constant 
reflectance is varied (e.g., 2-32 m) and the correlation coeffi- 
cient is varied from 0 to 0.9. The results are for several 
relative sizes between the scene cell and the ground IFOV of 
the sensor. With increasing correlation, the accuracy for 
large cells (few cells per IFOV side) falls sharply before 
decreasing at a constant rate, while the accuracy for small 
scene cells (many cells per IFOV side) remains constant 
before falling sharply at high correlations. 

From the theoretical point of view, the implications of this 
chart are as follows. For scenes that have large areas of 
constant reflectance the classification accuracy will be more 
susceptible to correlation changes at low values, while for 
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Fig. 10. Effect of scene cell size and spatial correlation coefficient on 
classification accuracy. The various curves are for differing numbers of 
ground scene cells contained in one side of the sensor IFOV. 

scenes with small areas of constant reflectance the accuracy 
is more susceptible to correlation changes at high values. 

The results of Fig. 10 show what happen for arbitrary 
combinations of cell size and correlations; however, it is 
interesting to consider them for more realistic situations. It 
has been observed that for typical agricultural scenes, spatial 
correlation generally increases with decreasing scene cell size 
[14]. That is, for typical data sets, large scene cells have low 
spatial correlation, while small cells have high correlation. 
From the summary of results shown in Table VI, the in- 
crease in spatial correlation would normally lead to a de- 
crease in accuracy, while the decrease in cell size (which is 
equivalent to an increase in PSF radius) would lead to an 
increase in accuracy. Thus these trends would tend to offset 
each other. This implies that in typical agricultural scenes 
the spatial size and correlation of the surface cells have 
relatively little effect on classification accuracy. 

V. CONCLUSION 
We have presented an analytical model for the study of 

interrelated effects of parameters in optical remote sensing 
systems. This model is aimed at studying these effects on the 
ability of the system to distinguish between ground cover 
classes. In this model we use field reflectance measurements, 
accurate atmospheric models, spatial and spectral statistics, 
detailed sensor models, and accuracy estimation to bring 
together a comprehensive yet practical systemwide model. 

The analytical model developed in this paper was com- 
pared to a more detailed and computationally intensive 
simulation model and was seen to compare quite similarly, 
except where spatial constraints such as limited field size and 
boundaries occur. 

System parameter effects on radiometric and classification 
performance were investigated and trends presented for 
several parameters. It was seen that higher SNR's did not 
always lead to high classification performance. 

System parameter interrelationships were also investi- 
gated. It was observed that additive path radiance from the 
surface can increase the effect of hazy atmospheres, even 
when no sensor noise is present. We have shown that in clear 
atmospheres, the reduced size of the image (over constant 
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surface area) for off-nadir viewing angles can increase classi- 
fication accuracy, while in hazy atmospheres high view angles 
result in decreased accuracy. Results were presented on the 
interrelationships of the spatial correlation of scene cells, 
their size and their effect on classification accuracy. 

These results have been presented to illustrate trends 
predicted by the model for the system configurations studied. 
While it is believed that these trends can be extended to 
similar system configurations, it should not be assumed that 
they reflect the absolute values to be obtained in the real 
system. 
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