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ABSTRACT

Observations from satellite lidar instruments have provided
evidence in the remarkable changes in polar ice sheets on a
global scale. The Ice, Cloud and land Elevation Satellite-
2 (ICESat-2) is scheduled for launch by NASA in 2018
and will monitor the elevation changes of polar ice sheets
and vegetation canopy. To validate ICESat-2’s approach of
photon-counting laser altimetry, measurements obtained from
the Multiple Altimeter Beam Experimental Lidar (MABEL)
instrument are critical. In support of the ICESat-2 mission,
this paper derives an algorithm for the detection of ground
and vegetation canopy in photon-counting laser altimeter
data. This approach uses a density-based clustering model
and modifies the shape of search area. Based on results from
MABEL observations, the proposed approach is seen to be
robust in detecting ground and vegetation canopy as well as
background noise reduction. In addition, this approach can be
quickly implemented and adaptive to photon-counting lidar
data sets with different point cloud densities.

Index Terms— LiDAR, photon-counting, clustering,
MABEL

1. INTRODUCTION

In recent years quantifying changes in polar ice sheets re-
mains an earth science priority. These changes could con-
tribute a large part in terms of sea level rise and global cli-
mate change. To monitor the elevation changes of Green-
land and Antarctic ice sheets, the Ice, Cloud and land Eleva-
tion Satellite-2 (ICESat-2) is currently scheduled for launch
in 2018. It is also intended to measure land topography and

vegetation characteristics [1]. To simulate ICESat-2-like data,
NASA is currently conducting flights over areas of interest us-
ing the Multiple Altimeter Beam Experiment Lidar (MABEL)
laser altimeter. Measurements from MABEL provide a ca-
pability for airborne photon-counting altimetry and therefore
serves as a prototype and simulator for the upcoming ICESat-
2 mission [2].

The MABEL instrument uses a high-repetition-rate pulsed
laser variable from 5 to 25 kHz, with a pulse length of 2 ns.
The laser generates both 1064- and 532- nm outputs. MA-
BEL records the time-position of each individual photon via
detectors with single-photon sensitivity. The increased sensi-
tivity often results in a more noisy data set, since background
photons and system noise can also trigger the detector. While
different methodologies have been developed to process lidar
elevation data [3], an effective noise reduction and ground de-
tection approach is required for micropulse photon-counting
lidar altimeter data.

Previous work has shown the main factors affecting per-
formance of photon-counting lidar on ice sheets [4], as well
as noise filtering techniques for simulated ICESat-2 [5] and
MABEL data [6]. In this paper, a clustering method is modi-
fied and used for the detection of the ground surface in MA-
BEL data. This approach is based on the concept of Density
Based Spatial Clustering of Applications with Noise (DB-
SCAN) [7]. Due to the higher density in the horizontal di-
rection in photon-counting lidar point clouds, the shape of
searching area is modified from a circle to an ellipse. This
will have high accuracy in surface finding and is computa-
tionally efficient.



2. DATA SETS

Two example data sets from MABEL will be used in this
study. The first one was collected near the Jakobshavn Glacier
on April 19, 2012 under clear sky condition in daytime. The
other one was collected in Wisconsin, USA on Spetember 26,
2012 under clear sky condition in nighttime. The data set used
in this study (L2A, Release 8) consists of range and positional
information (corrected for aircraft pitch, roll and yaw) of all
received photon detection events, as calculated by the sensor
based on time of departure/arrival. Surface elevation can then
be inferred from the detected range and altitude of the air-
craft. In Figure 1, a 2D elevation profile of a section of (a)
Jakobshavn Glacier, and (b) Wisconsin are shown using the
complete set of photon detections (red dots) from MABEL
data. The total flight time is 1 min.

(a) Jakobshavn Glacier

(b) Wisconsin

Fig. 1. 2D elevation profile of a section of (a) Jakobshavn
Glacier and (b)Winconson, using the complete set of photon
detections (red dots).

The two example data sets here represent different scenes
with different solar conditions. The one from Jakobshavn
glacier is for snow/ice covered ground with high noise rate,
while the one from Wisconsin demonstrates hilly terrain cov-

ered by canopies with low noise rate. A fast algorithm is re-
quired for the detection of photons reflected from the ground
as well as the vegetation canopy. Here we will use a cluster-
ing algorithm relying on a density-based notion of clusters to
identify clusters consisting of ground and canopy returns. The
test algorithm is based on Density Based Spatial Clustering of
Application with Noise (DBSCAN).

3. APPROACH FOR DETECTION OF GROUND

3.1. Introduction to DBSCAN

The key idea of DBSCAN is that for each point of a cluster the
neighborhood of a given radius has to contain at least a min-
imum number of points, i.e. the density in the neighborhood
has to exceed some threshold [7]. The shape of a neighbor-
hood is determined by the choice of a distance function for
two points p and q, denoted by dist(p, q). Two parameters
mentioned here are a Eps-neighborhood of a point, defined
by dist(p, q) ≤ Eps, and the minimum number of points
(MinPts) in that Eps-neighborhood.

3.2. A modified DBSCAN for surface detection

For our datasets in two dimensions, the distance between two
points p(tp, hp) and q(tq, hq) is defined as:
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where: t represents delta time in Figure 1, which can be
considered as along-track distance, and h represents eleva-
tion. tscale and hscale are used for normalization so that the
points in test data set have comparable order over t and h axis.
Hence dist(p, q) is now unit less.

In our algorithm, since most of the clusters (surface re-
turns) have higher density in horizontal than in vertical di-
rection, it is reasonable to modify the shape of search area
accordingly. Therefore, the distance between point p(tp, hp)
and q(tq, hq) is now modified as:
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As can be seen in Figure 2, the search area is modified
as an ellipse with centroid p, major axis with length 2a and
minor axis with length 2b, while a > b. Due to the change
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Fig. 2. Modification of searching area using DBSCAN. In
left, by using a circular searching area, point q is density-
connected to point p, also classified as part of the cluster.
While in right, since the searching area is modified as ellipse,
point q is no longer density-connected to point p, therefore q
is now classified as noise.

in search area, points in the horizontal direction have more
weight with respect to the search area center than points in the
vertical direction. Therefore, continuous points in a roughly
horizontal direction are more likely to be classified as belong-
ing to the cluster. That is also the same as in the detection of
ground for MABEL lidar point clouds.

3.3. Estimation of clustering parameters

As the ellipse shape is determined by a and b in Eq.(2), two
parameters are needed for modified DBSCAN implementa-
tion: MinPts and Eps. Here we develop a simple but ef-
fective heuristic way to determine the two parameters. For
simplicity, Eps=2 is used all the time so that only MinPts

will be modified. It can be done by estimating the average
point density within the search ellipse.

(1) A partition of points from test data set is first extracted.
This example covers a flight time of δt and an elevation range
of δh. The Area S of this sample data set is:

S = δt · δh; (3)

(2) For an ellipse with dist(p, q)=Eps, its area s1 is:

s1 = π · Eps2 · tscalehscale · ab (4)

where: a=0.5, b=0.2. Hence, the number of ellipses within
the example data set is roughly estimated as S/s1;

(3) The number of points in the example data set is found
to be N . Therefore, the average point density (ρ) within the
search ellipse can be calculated:

ρ = N/S · s1; (5)

(4) To better estimate ρ, more than one example data
sets are extracted from test data set and processed through
steps (1) to (3) and then averaged. In the proposed cluster-
ing method, point density for clusters should be higher than
the average density of the whole data set. MinPts can be
empirically estimated as:

MinPts ≥ 4 · ρ (6)

Practically we can always start with the minimum integer
larger than 4ρ and increase by 1 gradually. For the MABEL
photon-counting lidar data sets as in Figure 1(a), ρ ≈ 0.36

and MinPts = 4 is finally applied. For the other data set as
in Figure 1(b), ρ ≈ 3.85 and MinPts = 16 is used. This
proposed clustering algorithm can be quickly implemented
and adaptive to photon-counting lidar data sets with different
point densities.

4. RESULTS AND DISCUSSION

The results for detection of ground for MABEL data are
shown in Figure 3. Parameters used in modified DBSCAN
are: a=0.5, b=0.2, Eps=2. In addition, MinPts=4 is se-
lected for Jakobshavn Glacier and MinPts=16 is used for
Wisconsin. Here red dots represent classified surface returns
while black dots represent classified noise. It is shown that
the profile of ground is reliably extracted from point cloud,
as can be seen in Figure 3(a). Meanwhile, both the ground
surface and canopy can be detected from background noise,
as can be seen in Figure 3(b). The proposed algorithm is
seen to be robust in detecting ground and vegetation canopy
and adaptive for data sets with different point cloud densities.
However, since the vegetation canopy would partially block
the ongoing and returning photons from ground, the point
density of ground in that region is lower than ground without
canopy coverage. Therefore, that part of the ground is hard to
detect using the proposed method.

5. SUMMARY AND FUTURE WORK

In this paper, an algorithm is proposed for the detection of
ground and vegetation canopy for photon-counting laser al-
timetry data. Two data sets from MABEL in different solar
conditions were reviewed. A clustering method based on the



(a) Jakobshavn Glacier
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Fig. 3. Result for detection of ground and vegetation canopy
for MABEL dataset collected over (a) Jakobshavn Glacier;
and (b) Wisconsin. Here red dots represent classified surface
returns while black dots represent classified noise. Parameters
used in clustering are: a=0.5, b=0.2, Eps=2, (a)MinPts=4,
(b)MinPts=16.

concept of DBSCAN was introduced. The area shape of a
data point search for its nearest neighbors was modified to be
an eclipse to match general characteristics of terrain or veg-
etation canopy. Results showed that the proposed algorithm
works well for surface detection in point cloud with variable
noise rates. The surface and canopy can be expected to be
observable during the ICESat-2 mission. In the future, per-
formance assessment will be studied to quantitatively evalu-
ate the proposed algorithm. The algorithm derived here can
be used as a basis for the analysis of data from the ICESat-2
mission, MABEL, and other photon-counting lidar altimeter
data in general.
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