This course presents a unified view of the formation of images and image quality of an optical system from an applications viewpoint, but with a strict mathematical development. Topics covered are: ray and wave theory of imaging, image quality measurements, image formation with coherent and incoherent light, and optical information processing.

1. Review of the Wave Equation and Systems Analysis of Light Propagation
 i. Huygens’ principle, diffraction integrals
 ii. Maxwell’s equations
 iii. Measurable electromagnetic quantities: power
 iv. Quadratic phase factors

2. Review of the 2-D Fourier transform
 i. Approximations of the Fourier transform
 a. Moments
 b. Method of Stationary Phase
 ii. Impulse response and transfer function of light propagation
 iii. Asymptotic evaluation of the diffraction integral in the Fresnel and Fraunhofer regions
 iv. Stationary phase method

3. Fresnel transform
 i. Effect of apertures and lenses on plane wave spectra: Abbé’s theory
 ii. Uncertainty in fields and transforms

4. Coherence of light

5. Imaging Properties of Lenses from the Viewpoint of the Plane Wave Spectrum
 i. Plane wave spectrum analysis
 ii. Transfer function in coherent light
 iii. Transfer function in incoherent light
 iv. Modulation transfer function (MTF) of a perfect lens
 v. Sampling of fields and transforms, relation to information theory

6. Imaging Properties of Lenses from Viewpoint of Diffraction Integral
 i. Thin lens as “quadratic phase plate”
 ii. Fourier transforming property of lenses, shift-variant systems
 iii. Action of lens for plane waves and spherical waves

7. Metrics of Optical Image Quality
 i. Optical transfer function and point spread functions in coherent and incoherent light
 ii. Modulation Transfer Function

8. Optical Information Processing and Holography
 i. 4f correlator
 ii. Optical Transfer Function Synthesis
 iii. Incoherent processing by geometrical optics
 iv. Holography and computer-generated holography
 v. Optical matched filtering
 vi. Spatial carrier techniques