IMGS-616-20141 Homework Assignment #6 Due 10/30/2014 (Th)
(NEXT EXAM will be held Thursday, 11/6)

0. In Chapter 7 (2-D special functions), read §7.2, §7.3.1-§7.3.3, §7.3.5, §7.4 (you may skip the sections
on rotating functions; also read Chapter 10 (2-D transforms), and Chapter 11 (transforms of circular
functions)

1. Evaluate the volumes of and graph 1-D axial profiles (i.e., \(f[x_0] \) and \(f[0, y] \)) of the following functions as “top views”. Also find expressions for and sketch the even and odd parts.

 (a) \(f[x, y] = SINC \left[\frac{x}{2}, y \right] \)

 (b) \(g[x, y] = RECT \left[\frac{x}{2}, \frac{y}{4} \right] - RECT \left[x, \frac{y}{2} \right] \)

 (c) \(p[x, y] = CYL \left(\frac{\sqrt{x^2 + y^2}}{2} \right) - CYL \left(\frac{\sqrt{x^2 + y^2}}{2} \right) \)

 (d) \(q[x, y] = [CYL \left(\frac{r}{2} \right) - CYL (r)] \cdot STEP \left[y \right] \)

2. Find the Fourier transforms of the following 2-D separable functions and sketch them as profiles or as “images”:

 (a) \(COR \left[\frac{x}{2}, 2y \right] \), where “COR” is the “corral” function defined in §7.3.6

 (b) \(RECT [x, y] * (\delta [x] \cdot 1 [y]) \)

 (c) \(RECT [x, y] * (\delta [x - 1] \cdot 1 [y - 1]) \)

 (d) \(RECT [x, y] * CROSS [x, y] \), where \(CROSS [x, y] = \delta [x] \cdot 1 [y] + 1 [x] \cdot \delta [y] \)

 (e) \(COR [x, y] * COR [x, y] \)

3. Use the Fourier transforms of \(\exp [\pm i \pi x^2] \) to derive the 2-D transform

 \(\mathcal{F}_2 \{ \exp [\pm i \pi (x^2)] \cdot \exp [\pm i \pi (y^2)] \} = \mathcal{F}_2 \{ \exp [\pm i \pi (x^2 + y^2)] \} = \mathcal{F}_2 \{ \exp [\pm i \pi r^2] \} \)

4. Find the results of the convolution and sketch it:

 (a) \(CYL (r) * (\delta [x, y + 2] + \delta [x, y - 2]) \)

 (b) \(GAUS (r) * \delta [x - 1, y] \)

5. Evaluate the Fourier transforms of the following functions and sketch them:

 (a) \(CYL (r) * (\delta [x] \cdot (\delta [y + 2] + \delta [y - 2])) \)

 (b) \(GAUS (r) * \delta [x - 1, y] \)

 (c) \(J_0 (2\pi r) + J_0 (4\pi r) \)

 (d) \(\exp \left[-i \pi \frac{r^2}{4} \right] + \exp \left[+i \pi \frac{r^2}{4} \right] \)

6. Find the transfer function of the imaging systems with the following impulse responses:

 (a) \(h_a (r) = J_0 (2\pi r) + J_0 (\pi r) \)

 (b) \(h_b (r) = SOMB \left(\frac{r}{10} \right) \)

 (c) \(h_c (r) = -r^2 GAUS (r) \)

7. Evaluate AND SKETCH the results of the following 2-D operations, where the symbols “∗” and “★” denote 2-D convolution and correlation, respectively:

 (a) \(CYL (r) * (\delta [x] \cdot 1 [y]) \)

 (b) \(\cos \left[x\pi \right] \cdot SINC [\eta] + SINC [\xi] \cdot \cos \left[\eta \pi \right] \) ★ \(\left(\cos \left[2\pi \xi \right] \cdot SINC \left(\frac{\eta}{2} \right) + SINC \left(\frac{\xi}{2} \right) \cdot \cos \left[2\pi \eta \right] \right) \)

 (c) \(J_0 (2\pi \rho_0 r) * J_0 (2\pi \rho_1 r) \), where \(\rho_0 \neq \rho_1 \)