1. Find the Fourier transforms of the following functions and sketch them as BOTH real and imaginary parts AND as magnitude and phase:

(a) \(f[x] = \text{RECT} \left[\frac{x}{2} \right] + \text{RECT} \left[\frac{x}{4} \right] \)

(b) \(h[x] = \frac{1}{2} \text{RECT} \left[\frac{x - 1}{2} \right] + i \cdot \text{RECT} \left[\frac{x + 1}{2} \right] \)

(c) \(p[x] = \cos \left[\frac{x^2}{4} \right] \)

(d) \(r[x] = \sin \left[\frac{x^2}{4} \right] \)

(e) \(u[x] = p[x] + i \cdot r[x] \)

2. Find expressions for (AND SKETCH) the inverse Fourier transforms of the following functions:

(a) \(R[\xi] = \left(\frac{1}{10} \right) \cdot \left(\delta \left[\frac{\xi}{10} + 1 \right] + \delta \left[\frac{\xi}{10} - 1 \right] \right) \)

(b) \(G[\xi] = \text{SINC}^2 \left[\frac{\xi - 1}{2} \right] \)

(c) \(S[\xi] = \text{TRI} [\xi + 1] + \text{TRI} [\xi - 1] \)

3. Evaluate the Fourier transforms of the outputs of the following operations and sketch them as real-and-imaginary parts and as magnitude-phase:

(a) \(\text{RECT}[x] \ast \text{RECT}[x] \)

(b) \(\text{RECT}[x-1] \ast \text{RECT}[x] \)

(c) \(\text{RECT}[x-1] \ast \text{RECT}[x+1] \)

(d) \(\text{RECT}[x-1] \ast \text{RECT}[x+1] \)

4. Find the Fourier transforms of the following functions and sketch both representations:

(a) \(f[x] = \text{COMB}[x] \cdot \text{RECT} \left[\frac{x}{4} \right] \)

(b) \(g[x] = \left(\text{COMB}[x] \cdot \text{RECT} \left[\frac{x}{4} \right] \right) \ast \text{RECT}[2x] \)

(c) \(r[x] = \text{COMB}[x] \cdot \text{SINC} \left[\frac{x}{4} \right] \)

(d) \(s[x] = \text{COMB}[x] \cdot \text{SINC} \left[\frac{x}{2} \right] \)

(e) \(t[x] = \text{COMB}[x] \cdot \text{SINC}[x] \)

(f) \(u[x] = \text{COMB}[x] \cdot \text{SINC}[2x] \)

5. In HW#4-4, you solved (or tried to) the convolutions of two scaled Gaussian functions and of two SINC functions:

(a) \(\text{GAUS} \left[\frac{x}{3} \right] \ast \text{GAUS} \left[\frac{x}{4} \right] = \int_{-\infty}^{\infty} \exp \left[-\pi \left(\frac{x}{3} \right)^2 \right] \exp \left[-\pi \left(\frac{x}{4} \right)^2 \right] \, dx \)

(b) \(\text{SINC} [3x] \ast \text{SINC} [2x] = \int_{-\infty}^{\infty} \left(\frac{\sin [3\pi x]}{3\pi x} \right) \left(\frac{\sin [2\pi (x - \alpha)]}{2\pi (x - \alpha)} \right) \, d\alpha \)

Use the filter theorem and known transforms to evaluate these convolutions, which is MUCH easier than direct integration.