Homework 2

1. Consider the experiment of tossing three fair coins—a penny, a nickel and a dime. Construct a visualization of the sample space \mathcal{U}. Let $X =$Number of Tails. Show the set in \mathcal{U} that corresponds to each value of X. Calculate and plot the distribution function $F_X(x)$.

2. Plot the function $D(x) = F_X(x) - F_X(x-1)$ for the distribution function in Exercise 1. Interpret the result in terms of probabilities.

3. Consider the function $d_\Delta(x) = (F_X(x) - F_X(x-\Delta))/\Delta$. Plot this function using the distribution function of problem 1 for $\Delta = 0.5$ and $\Delta = 0.1$. Give an interpretation of the results. What happens as $\Delta \to 0$?

4. Consider the experiment of rolling a fair die as described in Example ??

 List the following events and compute their probabilities

 (a) $X_1 + X_2 = 1$
 (b) $X_1 = X_2$
 (c) $X_1 \neq X_2$

5. Consider the experiment of rolling a pair of fair dice. Let X_1 be the number showing on the first face and X_2 be the number showing on the second. Let $X_3 = X_1 + X_2$. Compute the following probabilities.

 (a) $P[X_3 = 5]$
 (b) $P[X_3 = 5 \mid X_1 = 2]$ by using the definition of conditional probability.
 (c) $P[X_3 = k]$ for $k = 1, 2, \ldots, 12$.
 (d) $P[X_3 = k \mid X_1 = 2]$ for $k = 1, 2, \ldots, 12$.

6. Show that the two-dimensional probability density function is non-negative by making use of the properties of the 2-D probability distribution function.

7. Let $\mathbf{W} = (U, V)$ be a two-dimensional random vector with the joint probability density function

 \[f_{U,V}(u, v) = \frac{1}{2\pi\sqrt{1-\rho^2}} \exp \left[-\frac{u^2 - 2\rho uv + v^2}{2(1-\rho^2)} \right] \]

 where $|\rho| \leq 1$. We will learn that this is the joint pdf of correlated normal random variables with correlation coefficient ρ. Show that

 \[f_U(u) = \frac{1}{\sqrt{2\pi}} e^{-u^2/2} \]
and

\[f_V(v) = \frac{1}{\sqrt{2\pi}} e^{-v^2/2} \]

for any value of \(\rho \), and determine the value of \(\rho \) for which the random variables are statistically independent.

8. Suppose that \(U \) is uniformly distributed over \([-1, 1]\) and that \(V = U^2 \). Find \(F_V(v) \) and \(f_V(v) \). Notice that the transformation is not single-valued so that care must be taken in the analysis.