Computing for Imaging Science (SIMG-726)

Introduction
- Course Information
 - Course Title
 - Course Objective
 - Prerequisites/Expectations
 - Course Grading
 - Course Text
 - Computing Resources

Course Information
- Course Title
 - Computing for Imaging Science
- Course Number
 - SIMG 726
- Meeting Times
 - Monday and Wednesdays 11:00-1:00 PM
- Meeting Locations
 - Mondays (Classroom), Wednesdays (Lab)

Contact Information
- Instructor
 - Rolando Raqueño
 - E-mail (rolo@cis.rit.edu)
 - Phone (475-6907)
 - Office (76-3108)
- Office Hours
 - Monday and Wednesdays (2:30-3:30 PM)
 - Other times by appointment

Course Objective
- Basic proficiency in UNIX operating system for problem solving in imaging
- Learning elementary programming constructs in IDL and refinement of programming skills
- Useful data manipulation techniques
- Establish software development, validation, and documentation practices

UNIX Proficiency
- Basic UNIX Environment Proficiency
 - X-Windowing Environment (networked)
 - The universally available editor 'vi'
 - Navigation and File Manipulation
 - Basic Computing Data Type and Hardware differences
Why UNIX?

- Why the UNIX Environment?
 - Very mature technology
 - Maintains a large base of high quality "copy-left" programs
 - LINUX is "free" and can run on a 386 PC
 - Remote computing is a natural part of UNIX
 - Very close control of the computer
 - Minimalist approach to computing

Shortcuts and Timesavers

- Learn shortcuts and time savers when solving programming related problems (when not to do traditional program)
 - a.k.a "Stupid UNIX Tricks"
 - Shell Scripts
 - AWK & SED
 - Makefiles
- Application in an imaging context

Compiling Traditional Programs in UNIX

- Legacy FORTRAN and C code requires some knowledge of how to compile these programs
- Tools to aid in compiling (makefiles)
- Common pitfalls
- Setup tips for input and output data files

Imaging Concepts

- Application in an imaging context
 - Bi-level
 - Monochrome
 - Color
 - Multispectral
 - Hyperspectral

IDL Environment

- IDL Basics, Syntax, and Semantics
 - Your responsibility get started
- IDL Graphical User Interface (GUI) development
- How IDL interacts with the UNIX environment.

This Course is/is not

- This course is not...
 - an algorithm course in image processing or computational theory
 - a programming course in C/C++
- This course will...
 - give you a means to prototype and test image processing algorithms
 - provide a foundation for prototyping algorithms that can be translated into traditional programming languages
Will/will not make you...
- This course is not...
 - Designed to make you a software engineer
- This course, however, will...
 - Give you the skills to communicate with software engineers about your algorithm
 - Provide them necessary concepts, specifications and test cases, i.e.,

 The working prototype

Documentation, Documentation
- This course will...
 - Teach you about documentation in the form of source code control.

 RCS or SCCS
- Inherently lacking in other operating systems (OS)

Prerequisites/Expectations
- Experience in a high level programming language (e.g. C, FORTRAN, BASIC, PASCAL, ADA, etc.) in the last 20+ years.
- Ability to make lots of mistakes (and remember them)
- Ability to deal with frustration, and know when to quit
- Good Typing Skills a plus
- Good Technical Writing Skills

Key Milestones in the Progression of Programming Experience
- Programming in traditional languages
 - Beginning (Monolithic programs)
 - single letter variables
 - Loops and maybe an occasional GOTO
 - Intermediate (Use of subroutines and functions)
 - Favor Local variables rather than Global Variables
 - Understand parameter passing schemes
 - Advanced (Structures and abstract data types)
 - More meaningful variable names

Milestones in the Progression of Programming Experience
- Programming in traditional languages
 - Learning that hand-optimizing code at the development is simply not worth the time
 - Learning to separate the algorithm from the bells and whistles (i.e., input and output code)
 - Creating a library of "tools"
 - Use of revision control utilities along with README's and formal documentation.

Milestones in the Progression of Programming Experience
- Programming in non-traditional languages
 - Thinking about the problems in terms of matrix and vector operations
 - Avoiding loops and conditionals
 - Thinking about the "Non-expert" by designing the Graphical User Interface (GUI)
 - Realizing that there is no single software tool that solves everything.
Course Grading
• Final IDL GUI Project 35%
 –Presentation and Report
• Mid-term Exam 35%
• Programming Assignment(s) 20%
 –Will be questions in Mid-term
• Quizzes (every Monday) 10%

Course Text
• Fanning’s Book - IDL Programming (Required)
• Research Systems Incorporated (RSI)
 –Online Manuals
 • Using IDL
 • Building IDL Applications
 • Reference Manuals
• UNIX in a Nutshell (O’Reilly & Associates)
• The Cuckoo’s Egg (Cliff Stoll)

Other References
• Text
 –Learning the UNIX Operating System
 –UNIX Power Tools
• On-line
 –News groups
 • comp.lang.idl-pvwave
 –Web sites
 • www.rsinc.com

Other References
• Notes
 –These Powerpoint slides will be available on-line for your reference.
 –These Notes will be available the evening before class.
 –If not, last years notes will be available
 –Send me mail and I will reply with the location of the site.

Computing Resources
• RIT’s ISC
 –Provides general computing resources to the RIT community (e.g. internet connectivity, LIMITED dial in line services)
• CIS computing facilities
 – Imaging specific capabilities (IDL, etc.)
 – Undergraduate and Graduate DIP Lab
 – The “DEAL” with RSI

Syllabus until Holiday Break
• Class #0 - Today
 –This Lecture
• Assignment #1
 –Get your account setup
 –Send e-mail to rolo@cis.rit.edu with personal info (Name, Address, Phone Number, Undergraduate/Graduate Majors, Computer Experience)
 –Go over the on-line tutorial vitutor (CIS)
 • -rvrpci/pub/vitutor/vitutor
Syllabus

- **Class #1 - December 1**
 - Tour of UNIX, X-Windows
 - Introduction vi
 - Getting started and Tour of IDL
 - Working with Data
 - Plotting
 - Hardcopy output from IDL

- **Project Assignment #1 (Due December 15)**
 - Implementing Statistics Functions in IDL

- **Class #2 - December 6**

- **Class #3 - December 8**
 - The PBMPLUS Utilities
 - IDL and PBMPLUS
 - Basic IDL Image Manipulations

- **Class #4 - December 13**
 - Reading/Writing Data in IDL
 - Image Formats
 - Final Project Examples

- **Quiz #2**
 - Topics
 - man, ls, cp, mv, ped

- **Class #5 - December 15**
 - IDL debugging & GUI Introduction

- **Break Assignments**
 - Read the Cuckoo's Egg (Quiz Material)
 - Mockup Drawing of GUI Final Project

- **Due Today**
 - Project Assignment #1
 - Abstract and high level overview of final project.

Summary

- Course Information and Objectives
- Prerequisites/Expectations and Experience
- Course Grading
- Course Text and Resources
- Syllabus until Break
Keep in mind

- There is more clout to say that you can build a car rather than just saying that you know how to drive one.
- Our goal is to get you to understand how a car works as well as drive it.