Matthew Montanaro
        Senior Research Scientist     RIT
    Home     CV     Software  
 
Montanaro Curriculum Vitae (CV) - November 2017


RESEARCH INTERESTS

As a research scientist in the Chester F. Carlson Center for Imaging Science at the Rochester Institute of Technology (RIT), I am involved in the calibration and exploitation of imaging systems, particularly at thermal infrared wavelengths. At NASA Goddard Space Flight Center, I was heavily involved in the pre-flight and on-orbit calibration and characterization of the Thermal Infrared Sensor (TIRS) for the Landsat 8 mission. My experience and detailed knowledge of the instrument have proven invaluable to me in developing solutions to problems that have arisen with the instrument in-flight.
At RIT, I maintain strong ties with NASA and the U.S. Geological Survey. My Landsat calibration work has expanded to include the definition and planning of calibration tests for the upcoming Landsat 9 mission. My experience and professional contacts have allowed me to extend my calibration work beyond Landsat to assist in other NASA projects including the SOLARIS (VNIR) and the LEISA (SWIR) hyperspectral instruments. I have also become involved in the exploitation of thermal band imagery through collaborations with colleagues at various institutions.
Additionally, my position at RIT has provided me with an avenue to pass on my knowledge and experience in calibration and sensor operation to students through mentoring and hands-on applications.


PROFESSIONAL EXPERIENCE

Rochester Institute of TechnologyDec 2014 - Present
Senior Research ScientistRochester, NY
Researcher supporting mainly NASA-related projects focusing on the Landsat 8 mission, the future Landsat 9 mission, the New Horizons mission, and the Solar, Lunar for Absolute Reflectance Imaging Spectroradiometer (SOLARIS) sensor. Work focuses largely on sensor calibration and modeling, especially regarding thermal infrared imagery. Work also involves defining and verifying radiometric requirements regarding these missions and assisting in the recovery from instrument anomalies. Maintain strong collaborative efforts with NASA Goddard Space Flight Center and the USGS Earth Resources Observation Systems (EROS) Data Center. Also support a number of remote sensing undergraduate and graduate students.
Sigma Space Corporation / NASA Goddard Space Flight CenterSept 2009 - Nov 2014
Calibration ScientistGreenbelt, MD
Support Landsat Data Continuity Mission (LDCM) / Landsat 8 calibration and validation activities at NASA Goddard Space Flight Center (Code 618). Duties include instrument spectral and spatial data analysis, imaging chain analysis, radiometric calibration, algorithm development, calibration procedure development and execution, and validation of calibration methods and analyses focused mainly on the Thermal Infrared Sensor (TIRS). Directly involved with on-orbit checkout and radiometric calibration activities, planning activities, troubleshooting and recovery of instrument issues. Involves collaboration with colleagues at USGS EROS Data Center and Rochester Institute of Technology. Also involves written project status reports, oral presentations, technical memos, publications, team leadership and organization. Also support SOLARIS instrument laboratory testing. Duties include the collection of laboratory radiometric data and algorithm development.
Rochester Institute of TechnologyFeb 2006 - Jul 2009
Research Assistant at the Chester F. Carlson Center for Imaging ScienceRochester, NY
Conducted research in the Digital Imaging and Remote Sensing (DIRS) Laboratory to develop an exploitation tool to predict the temperature of mechanical draft cooling towers from remotely-sensed thermal infrared imagery. Research funded under the Department of Energy Savannah River National Laboratory. Project involved physics-based three-dimensional modeling, atmospheric radiance propagation modeling, regression analysis, laboratory emissivity measurements, and imaging system analysis. Project required quarterly technical memo progress reports and technical review meetings.


EDUCATION

Doctor of Philosophy in Imaging Science
Rochester Institute of Technology, Rochester, NY
Dissertation: Radiometric Modeling of Mechanical Draft Cooling Towers to Assist in the Extraction of their Absolute Temperature from Remote Thermal Imagery
May 2009
Bachelor of Science in Physics
Rochester Institute of Technology, Rochester, NY
Minors in American Politics, Astronomy, and Imaging Science
May 2005


FUNDING AWARDS

NASA Goddard Space Flight Center, "Systems Engineering Support For Next Generation Land Remote Sensing Systems", Principal Investigator, Sept 2014 - Present, $863,738
NASA Goddard Space Flight Center, "New Horizons Image Analysis Support", Principal Investigator, June 2015 - Present, $84,974


HONORS

Hydrosphere, Biosphere, and Geophysics Annual Award for Scientific Achievement, presented to Matthew Montanaro, NASA Goddard Space Flight Center, 2017.
NASA Group Achievement Award, presented to the Landsat Data Continuity Mission Team, NASA, 2014.
Robert H. Goddard Exceptional Achievement for Science Team, presented to the Landsat Calibration/Validation Team, NASA, 2014.
Robert H. Goddard Exceptional Achievement for Engineering Team, presented to the TIRS Instrument Development Team, NASA, 2013.
Hydrospheric and Biospheric Sciences Award for Scientific Achievement, presented to the Landsat Calibration Team, NASA Goddard Space Flight Center, 2012.


PROFESSIONAL ACTIVITIES

Member of the Landsat Calibration/Validation team
Reviewer for International Journal of Remote Sensing scientific journal
Reviewer for Remote Sensing of the Environment scientific journal
Reviewer for Remote Sensing scientific journal
Reviewer for Optical Engineering scientific journal


STUDENT MENTORING

Nathan Dileas, B.S., thesis, 2017-present, "An enhanced automated process to support Landsat thermal band absolute calibration"
Ryan Connal, B.S., thesis, 2017-present, "Derivation of surface thermal inertia maps from satellite thermal infrared imagery"
Tania Kleynhans, M.S., thesis, 2016 - 2017, "Prediction of top-of-atmosphere radiance in the long wave infrared through the utilization of atmospheric reanalysis data"
Elizabeth Bondi, B.S., thesis, 2015 - 2016, "Calibration of unmanned aerial system (UAS) imagery inside and outside of shadows for improved vegetation index computation"
Victoria Scholl, B.S., research assistant, 2015, "Unix script toolbox for automated submission and transfer of TIRS stray light-corrected scenes"
Fu Jiang, M.S., thesis, 2015, "Validation of the Thermal Infrared Sensor (TIRS) stray light correction"
Vicki Ngan, B.A., REU research assistant, 2015, "Characterization of the scattering artifacts in the New Horizons/Linear Etalon Imaging Spectral Array (LEISA) sensor"
Andrew Hitchner, B.S., thesis, 2015, "Cloud height measurements using Landsat 8 thermal images"


PRESENTATIONS

[P7]Montanaro, M. "A glimpse of where Earth remote sensing systems are headed in the future." Yale Center for Earth Observation, Yale University. New Haven, CT, USA (2017). Invited
[P6]Montanaro, M. "Remote sensing @ Pluto: perspectives on the New Horizons/LEISA imaging spectrometer." Webster Thomas High School. Webster, NY, USA (2016). Invited
[P5]Montanaro, M. "An overview of the Thermal Infrared Sensor (TIRS) onboard Landsat 8." The Rochester Chapter of The Society for Imaging Science and Technology. Rochester, NY, USA (2016). Invited
[P4]Montanaro, M. "How Landsat satellite thermal images are made, and what it means to you." Yale Center for Earth Observation, Yale University. New Haven, CT, USA (2016). Invited
[P3]Montanaro, M., Gerace, A. "Landsat 8 Thermal Infrared Sensor (TIRS) stray light correction algorithm development and assessment using coincident Terra MODIS data." American Geophysical Union (AGU) Fall meeting. San Francisco, CA, USA (2015).
[P2]Montanaro, M. Workshop on "The radiometric characterization of the Landsat 8 Thermal Infrared Sensor." Meeting on Characterization and Radiometric Calibration for Remote Sensing (CalCon). Logan, UT, USA (2015). Invited
[P1]Montanaro, M., Gerace, A., Reuter, D., Schott, J. "Image quality predictions through the use of data-driven simulation for the Landsat Data Continuity Mission." 18th William T. Pecora Memorial Remote Sensing Symposium. Herndon, VA, USA (2011).


PUBLICATIONS

Peer-reviewed Journal Articles:
[J10]Kleynhans, T., Montanaro, M., Gerace, A., & Kanan, C. (2017). Predicting top-of-atmosphere thermal radiance using MERRA-2 atmospheric data with deep learning. Remote Sensing, 9(11), 1133. doi: 10.3390/rs9111133
[J9]Gerace, A., Montanaro, M., & Connal, R. (2017). Leveraging intercalibration techniques to support stray-light removal from Landsat 8 Thermal Infrared Sensor data. Journal of Applied Remote Sensing, 12(1), 012007. doi: 10.1117/1.JRS.12.012007
[J8]Eon, R. S., Gerace, A. D., Montanaro, M., Ambeau, B. L., & McCorkel, J. T. (2017). Development of a simulation environment to support intercalibration studies over the Algodones Dunes system. Journal of Applied Remote Sensing, 12(1), 012008. doi: 10.1117/1.JRS.12.012008
[J7]Gerace, A., & Montanaro, M. (2017). Derivation and validation of the stray light correction algorithm for the Thermal Infrared Sensor onboard Landsat 8. Remote Sensing of Environment, 191, 246-257. doi: 10.1016/j.rse.2017.01.029
[J6]Montanaro, M., Gerace, A., & Rohrbach, S. (2015). Toward an operational stray light correction for the Landsat 8 Thermal Infrared Sensor. Applied Optics, 54(13), 3963-3978. doi: 10.1364/AO.54.003963
[J5]Reuter, D. C., Richardson, C. M., Pellerano, F. A., Irons, J. R., Allen, R. G., Anderson, M., Jhabvala, M.D., Lunsford, A.W., Montanaro, M., Smith, R.L., & Tesfaye, Z. (2015). The Thermal Infrared Sensor (TIRS) on Landsat 8: Design overview and pre-launch characterization. Remote Sensing, 7(1), 1135-1153. doi:10.3390/rs70101135
[J4]Montanaro, M., Levy, R., & Markham, B. (2014). On-orbit radiometric performance of the Landsat 8 Thermal Infrared Sensor. Remote Sensing, 6(12), 11753-11769. doi: 10.3390/rs61211753
[J3]Gerace, A., Schott, J., Gartley, M., & Montanaro, M. (2014). An analysis of the side slither on-orbit calibration technique using the DIRSIG Model. Remote Sensing, 6(11), 10523-10545. doi:10.3390/rs61110523
[J2]Montanaro, M., Gerace, A., Lunsford, A., & Reuter, D. (2014). Stray light artifacts in imagery from the Landsat 8 Thermal Infrared Sensor. Remote Sensing, 6(11), 10435-10456. doi:10.3390/rs61110435
[J1]Montanaro, M., Lunsford, A., Tesfaye, Z., Wenny, B., & Reuter, D. (2014). Radiometric calibration methodology of the Landsat 8 Thermal Infrared Sensor. Remote Sensing, 6(9), 8803-8821. doi:10.3390/rs6098803

Conference Proceedings:
[C23]Barsi, J.A., Markham, B.L., Montanaro, M., Morfitt, R., Hook, S.J., Schott, J.R., Raqueno, N.G. and Gerace, A. (2017). Landsat-8 TIRS thermal radiometric calibration status. In Earth Observing Systems XXII, vol. 10402, p. 104021G. International Society for Optics and Photonics.
[C22]Markham, B. L., Jenstrom, D., Masek, J. G., Dabney, P., Pedelty, J. A., Barsi, J. A., & Montanaro, M. (2016). Landsat 9 Mission: status and plans. SPIE Optical Engineering+ Applications, 99720G-99720G.
[C21]Montanaro, M., & Gerace, A. (2016). Performance of the proposed stray light correction algorithm for the Thermal Infrared Sensor (TIRS) onboard Landsat 8. SPIE Optical Engineering+ Applications, 99720F-99720F.
[C20]Ambeau, B. L., Gerace, A. D., Montanaro, M., & McCorkel, J. (2016). The characterization of a DIRSIG simulation environment to support the inter-calibration of spaceborne sensors. SPIE Optical Engineering+ Applications, 99720M-99720M.
[C19]Bondi, E., Salvaggio, C., Montanaro, M., & Gerace, A. D. (2016). Calibration of UAS imagery inside and outside of shadows for improved vegetation index computation. SPIE Commercial+ Scientific Sensing and Imaging, 98660J-98660J.
[C18]Markham, B. L., Barsi, J. A., Morfitt, R., Choate, M., Montanaro, M., Arvidson, T., & Irons, J. R. (2015). Landsat 8: status and on-orbit performance. SPIE Remote Sensing, 963908-963908.
[C17]Cui, Z., Montanaro, M., Gerace, A., Schott, J. R., & Markham, B. (2015). Requirement sensitivity studies for a future Landsat sensor. SPIE Optical Engineering+ Applications, 96070S-96070S.
[C16]Gerace, A., Montanaro, M., Beckmann, T., Tyrrell, K., Cozzo, A., Carney, T., & Ngan, V. (2015). TIRS stray light correction: algorithms and performance. SPIE Optical Engineering+ Applications, 96070Q-96070Q.
[C15]Gerace, A. D., Goodenough, A. A., Montanaro, M., Yang, J., McCorkel, J. T., & Ong, L. (2015). The development of a DIRSIG simulation environment to support instrument trade studies for the SOLARIS sensor. SPIE Defense+ Security, 947214-947214.
[C14]Montanaro, M., Barsi, J., Lunsford, A., Rohrbach, S., & Markham, B. (2014). Performance of the Thermal Infrared Sensor on-board Landsat 8 over the first year on-orbit. SPIE Optical Engineering+ Applications, 921817-921817.
[C13]Montanaro, M., Tesfaye, Z., Lunsford, A., Wenny, B., Reuter, D., Markham, B., Smith, R., & Thome, K. (2013). Preliminary on-orbit performance of the Thermal Infrared Sensor (TIRS) on board Landsat 8. SPIE Optical Engineering+ Applications, 88661D-88661D.
[C12]Schott, J. R., Gerace, A., & Montanaro, M. (2012). Simulation of the performance and image quality characteristics of the Landsat OLI and TIRS sensors using DIRSIG. SPIE Remote Sensing, 85330L-85330L.
[C11]Vanderwerff, K., & Montanaro, M. (2012). Dark and background response stability for the Landsat 8 Thermal Infrared Sensor. SPIE Optical Engineering+ Applications, 85100A-85100A.
[C10]Montanaro, M., & Gerace, A. D. (2012). Tracking nonuniformity in the thermal infrared sensor through pre-launch measurements and simulated on-orbit data. SPIE Defense, Security, and Sensing, 83902C-83902C.
[C9]Markham, B. L., Dabney, P. W., Reuter, D., Thome, K. J., Irons, J. R., Barsi, J. A., & Montanaro, M. (2011). Landsat data continuity mission operational land imager and Thermal InfraRed Sensor performance. SPIE Optical Engineering+ Applications, 81530D-81530D.
[C8]Thome, K., Reuter, D., Lunsford, A., Montanaro, M., Smith, R., Tesfaye, Z., & Wenny, B. (2011, July). Calibration of the thermal infrared sensor on the Landsat Data Continuity Mission. In Geoscience and Remote Sensing Symposium (IGARSS), 2011 IEEE International (pp. 985-988). IEEE.
[C7]Montanaro, M., Reuter, D. C., Markham, B. L., Thome, K. J., Lunsford, A. W., Jhabvala, M. D., Rohrbach, S.O & Gerace, A. D. (2011). Spectral analysis of the primary flight focal plane arrays for the thermal infrared sensor. SPIE Defense, Security, and Sensing, 804816-804816.
[C6]Thome, K., Lunsford, A., Montanaro, M., Reuter, D., Smith, R., Tesfaye, Z., & Wenny, B. (2011). Calibration plan for the thermal infrared sensor on the Landsat data continuity mission. SPIE Defense, Security, and Sensing, 804813-804813.
[C5]Reuter, D., Irons, J., Lunsford, A., Montanaro, M., Pellerano, F., Richardson, C., Smith, R., Tesfaye, Z., & Thome, K. (2011). The Operational land imager (OLI) and the thermal infrared sensor (TIRS) on the Landsat data continuity mission (LDCM). SPIE Defense, Security, and Sensing, 804812-804812.
[C4]Jhabvala, M., Choi, K., Waczynski, A., La, A., Sundaram, M., Costard, E., Jhabvala, C., Kan, E., Kahle, D., Foltz, R., Boehm, N., Hickey, M., Sun, J., Adachi, T., Costen, N., Hess, L., Facoetti, H., & Montanaro, M. (2011). Performance of the QWIP focal plane arrays for NASA's Landsat Data Continuity Mission. SPIE Defense, Security, and Sensing, 80120Q-80120Q.
[C3]Montanaro, M., Salvaggio, C., Brown, S. D., Messinger, D. W., Garrett, A. J., & Bollinger, J. S. (2009). Radiometric modeling of mechanical draft cooling towers to assist in the extraction of their absolute temperature from remote thermal imagery. SPIE Defense, Security, and Sensing, 729909-729909.
[C2]Montanaro, M., Salvaggio, C., Brown, S. D., Messinger, D. W., & Garrett, A. J. (2008, April). Apparent temperature dependence on localized atmospheric water vapor. In SPIE Defense and Security Symposium (pp. 696618-696618). International Society for Optics and Photonics.
[C1]Montanaro, M., Salvaggio, C., Brown, S. D., Messinger, D. W., Goodenough, A. A., Garrett, A. J., & Villa-Aleman, E. (2007, April). Radiometric modeling of cavernous targets to assist in the determination of absolute temperature for input to process models. In Defense and Security Symposium (pp. 656511-656511). International Society for Optics and Photonics.