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Abstract

We consider the optical remote sensing tracking problem for vehicles in a complex environment using an 
adaptive sensor that can take spectral data at a small number of locations. The Dynamic Data-Driven 
Applications Systems (DDDAS) paradigm is well-suited for dynamically controlling such an adaptive sensor 
by using the prediction of object movement and its interaction with the environment to guide the location of 
spectral measurements. The spectral measurements are used for target identification through feature matching. 
We consider several adaptive sampling strategies for how to assign locations for spectral measurements in 
order to distinguish between multiple targets. In addition to guiding the measurement process, the tracking 
system pulls in additional data from OpenStreetMap to identify road networks and intersections. When a 
vehicle enters a detected intersection, it triggers the use of a multiple model prediction system to sample all 
possible turning options. The result of this added information is more accurate predictions and analysis from 
data assimilation using a Gaussian Sum filter (GSF). 
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1. Introduction

Airborne object tracking systems aim to detect and track vehicles in a cluttered urban environment. This is a 
challenging problem and the DDDAS principles of incorporating additional data as needed and dynamically
controlling the location and modality of observations can improve results. It has been accepted that the use of 
multiple modalities, such as hyperspectral imaging, can better address the tracking problem, but a full
hyperspectral sensor results in a dramatic increase in the amount of data that must be transferred, stored, and 
analyzed. An adaptive hyperspectral sensor has the capability to add the benefits of multiple modalities without
dramatically increasing the volume of data. The sensor can be tasked to observe spectrally in targeted areas and 
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the location of the spectral observations can change in each frame to either follow the target or identify 
background features. Determining where spectral data is needed and dynamically adapting the sampling falls 
within the framework of a DDDAS.  

Spectral data facilitates the identification of targets in a complex environment. Once targets have been 
identified, their spectral features can be extracted and then used to properly identify tracks at future times. This 
concept, known as feature tracking, improves the accuracy of a track and makes it possible to reestablish tracks 
that have been temporarily lost due to obscurations. The downside to hyperspectal imaging is that it results in a 
dramatic increase in data volume. In this study, we consider an adaptive sensor similar to the RIT Multi-Object 
Spectrometer, which can perform spectroscopy on selected, individual pixels. The location of the spectral 
pixels can change each frame, so we use a Gaussian Sum Filter (GSF) data assimilation (DA) system and 
model predictions to control where spectral measurements are taken. After targets have been identified, the DA 
system forecasts the movement of the target using a model and uses this prediction along with the associated 
uncertainty estimates to advise the subsequent imaging. We investigate ways to guide the sampling based on 
the predictions of target location.  

More accurate forecast models will improve both prediction and analysis results. Most tracking algorithms 
employ a constant velocity model, which is a reasonable approximation for normal movement but can be 
limited when the target is turning. When a target is identified, we bring in additional data road information 
from OpenStreetMap to determine whether the target is traveling along a known road. If so, the airborne 
image and the OpenStreetMap data are used to identify intersection locations and possible turning paths in 
those intersections. When the target is predicted to enter an intersection, the constant velocity forecast model is 
replaced with a multi model system where the individual components of the GSF are assigned different turning 
models that represent different likely maneuvers.  This leads to improved analysis and analysis uncertainty 
results in the tracking. 

2. Tracking System 

The basic components of a tracking system are an imaging system, a target detection algorithm for the 
images, a predictive model for the motion of known targets, and a data assimilation algorithm to combine 
predictions and observations and evolve the uncertainties.  

2.1. DIRSIG Images 

To develop and test the system in a controlled environment that allows us a knowable ground truth, we use 
synthetic imagery generated by the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model. 
DIRSIG is a first-principles image generation model that computes time and material dependent surface 
temperature values, incorporates atmospheric contributions using MODTRAN, and predicts bi-directional 
reflectance functions to render realistic image sets. In addition, the Simulation of Urban Mobility (SUMO) 
traffic simulator has been integrated with DIRSIG to produce dynamic imagery for tracking scenarios. SUMO 
has the capability to simulate both vehicular and pedestrian movement, but for this study we consider only 
vehicular traffic. Different paint models are used for the different vehicles.  
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The motivation for using synthetic data is that, since we know the true positions and characteristics in a 
synthetic image, we can accurately compute performance metrics for the tracking system. Furthermore, 
multiple scenarios and sampling strategies within those scenarios can also be carried out without running 
multiple experiments. The scenario which is used in this paper comes from DIRSIG Megascene I, which is 
built to resemble part of Rochester, NY, USA. The simulation uses hyperspectral imaging from a fixed aerial 
platform assuming a static sensor mount. We focus on a piece of this image that contains two vehicles, which 
pass close by each other after one has executed a turn (Fig. 1). The spectral range here is 400 to 1000 nm with a 
spectral resolution of 5 nm.  

2.2. Target Detection 

Two detection methods are employed in the tracking system: Change and RX detection.  Change detection 
differences multiple frames to isolate anomalies. It can be applied to both panchromatic and hyperspectral 
images. RX detection, on the other hand, searches for regions that are different than the background in a multi 
or hyperspectral image. Both algorithms give some spurious results when used individually, but when used in 
concert provide good target detection performance. 

Ultimately, RX detection will not be possible in this application because the adaptive sensor only takes 
hyperspectral data in a small fraction of the pixels. In this study, however, we are focusing on other parts of the 
tracking system: the data assimilation algorithm, the forecasting model, and the feature matching. For this 
reason we use RX detection as a way to limit the possible sources of error and to provide a baseline for the 
performance of the system with full hyperspectral information in detection. 

2.2a. RX-Anomaly Detection 

RX-anomaly detection uses the Reed-Xiaoli Detector algorithm that detects the spectral differences between 
a region and its neighboring area [1]. As a result, spectrally distinct areas are differentiated from the image 
background [2]. The algorithm outputs a matrix of confidences for every single pixel and a predetermined 

Figure 1: One frame of the DIRSIG simulation showing a truck turning right along with the true center 
of the truck (green dot) and the analysis results using a constant velocity model (red) and multiple 
turning models (blue). The multiple turning models gives better results. 
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threshold is applied to these confidence matrices. If the confidence is higher than the predetermined threshold, 
the corresponding pixel is labeled as an anomaly pixel. Dimension reduction needs to be performed before 
applying RX detection so Principal Component Analysis is applied to the hyperspectral images to reduce the 
number of channels from 121 to 24. 

2.2b. Change Detection 

The change detection method followed in this paper is the Image Differencing method. This technique 
measures the spectral changes of two frames at two different time periods. Change detection methods do an 
outstanding job for hyperspectral images since they are spatially and spectrally rich images but are applicable 
to panchromatic images as well [3]. In Image Differencing, the difference of the two images at two district 
times is computed to get the confidence matrixes for every single pixel. Then, as in the RX-anomaly detection 
method, a pre-determined threshold is applied to the result. If the confidence is higher than the predetermined 
threshold, the corresponding pixels are marked as spectrally different from the background.  

2.3. Filtering Process 

The Gaussian Sum Filter is a nonlinear filter that represents the state probability density function by a finite 
mixture of Gaussian density kernels.  The mean and covariance of these density kernels are updated using a 
filtering method such as Extended Kalman filter (EKF) or Unscented Kalman filter.  In this study, EKF is used 
to update the states of density kernels.  The weights of the density kernels are updated with the classical weight 
update method. There are o
the accuracy of the tracking which will be implemented in the future [5].  

For a process , the total uncertainty associated with the state vector  is determined by the probability 
density function p.  Given the measurement data , one can find the posterior distribution for  using the 
GSF. Gaussian density kernels approximate the conditional pdf as 

, (4) 

where  , while ,  are the mean and 
the covariance of the  Gaussian kernel regarding the first k measurements. Each Gaussian component is 
propagated using an EKF update and the mean of the posterior pdf and the corresponding covariance matrix 
can be estimated as  

, (5) 
. (6) 

In order to get good performance from the GSF, we need to use an appropriate number of Gaussian kernels.  
On the other hand, to get a contribution from each component, the covariance belonging to these components 
need to be small enough so that the components around the mean can approximate the true conditional PDF. 
For this reason, the Gaussian components should be in the vicinity of the ±3  of the mean where  is the initial 
standard deviation of the covariance matrix. The implementation of the GSF here has been validated by 
comparisons with results using a standard Kalman filter.  

 



1943 Burak Uzkent et al.  /  Procedia Computer Science   18  ( 2013 )  1939 – 1948 

3. Feature Tracking 

In complex environments, tracking will often be lost when vehicles move under trees, behind buildings, or 
near other moving targets. In these cases, it is important to re-establish the track when a new detection occurs, 
as opposed to treating the re-detected vehicle as a new object. This is often accomplished through feature 
matching, where the spectral features of the new target are compared with those of past targets. Here, the 
comparison is made based on the spectral histogram [6,7]. In each frame a vehicle is detected, the spectral 
histogram of the vehicle is computed and saved. If a new target appears, the spectral features are extracted and 
then compared with the spectral histograms of all targets in previous frames. If the spectral histogram of the 
new target closely matches that of a previous vehicle, the new vehicle is regarded as a re-detection of the old 
target. If no preexisting target is matched, then a new track is initiated.  

In order to compute the spectral histogram, the tracking system must adaptively guide the sensor to take the 
limited spectral observations in a way that will optimally extract that spectral signal of the target. The system 
will steer the observations to the area where the target is most likely to be, but there are many possible 
strategies for sampling that region using only a handful of spectral pixels. This limitation arises from the fact 
that the RITMOS instrument can only take one pixel of spectral data per row or column per frame. We consider 
three sampling strategies for observing spectral pixels around the most likely location of the target: sampling 
pixels along the diagonal of the area, sampling pixels along a vertical line through the area, and a random 
sampling of one pixel per row in the area.  

Whatever measure is used for comparing histograms for feature matching must provide a consistent 
threshold for distinguishing between targets. This means that comparing histograms of the same target from 
different frames should be distinct from comparing histograms of two different targets. The distinction is made 
more difficult by the relatively small amount of pixels with spectral sampling. We consider two metrics for 
comparing spectral histograms in this paper: the Bhattacharyya measure and the Spectral Angle Mapper 
(SAM).   

The Bhattacharyya distance investigates the similarity of the two distributions. The distance between the two 
distributions is defined as 

, (7) 

where  is the Bhattacharyya coefficient between the reference vector,  ,and the test vector, . The 
equation for Bhattacharyya coefficient is defined as 

. (8) 

The SAM method computes the similarity between two spectra by measuring the angular difference of 
spectral direction the spectra. It is insensitive to the magnitude of brightness since it takes only the vector 
direction into account. It is defined as 

, (9) 

We test both methods here to determine which works better with the limited spectral sample of the targets 
provided by the adaptive sensor. Interestingly, because of the geometry of the truck bed, there is more variance 
in the spectral histogram of the truck in different frames than in the histograms of other vehicles we observed. 
Even with this variance, (which has the effect of raising the Bhattacharyya and SAM measures for the truck 
compared to itself) we are able to distinguish between the two cars from the entire tracked region.  
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While the Bhattacharyya measure consistently has lower values when the first vehicle is compared to itself, 

there are a few frames where the Bhattacharyya measure between car 1 and itself is barely below the measures 
for car 1 vs. car 2. This is potentially problematic, because it could lead to the misidentification of car 1 if the 
track was lost. The SAM measure, on the other hand, exhibits larger separation between the values for car 1 
compared to itself and car 1 compared to car 2. The difference between the two measures is amplified when 
one of the adaptive sampling strategies for calculating the spectral histograms is conducted. Based on these 
results, we use the SAM measure in the tracking code.  

After selecting SAM for the feature matching, we next investigate the strategies the system can use for 
controlling the spectral measurements. Since the RITMOS sensor allows one pixel per row or column of the 
image to be directed to the spectrometer, we will be not able to obtain spectral information at all of the pixels of 
the predicted location of the tracked vehicle. The reduction in data as well as possible inconsistencies in 
where on the vehicle the spectral information is taken in different frames makes feature matching more 
challenging. We test three approaches here, all of which begin with using the predictive model to estimate the 
most likely location of the target in the next frame. Next, the system will guide the sensor to take spectral 
measurements either along the diagonal of the predicted vehicle location, at random locations within the 
predicted location, and along the middle column of the predicted location. 

Figure 2: The performance of the SAM measure for the three different sampling methods; (top left) 
Sampling along the diagonal pixels of the vehicle, (top right) Random Sampling, (bottom) Sampling 

along the middle column of the vehicle 
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The middle column sampling method outperforms the other two in terms of separating the first car from the 
second car across most frames (Fig. 2). There is only one place where there is confusion between the two 
targets: in frame 14. This frame marks the start of the left hand turn that the Car 1 (the truck in Fig. 1) makes. 
The error is due to the model prediction not accurately capturing the start of the turn. Aside from the start of the 
turn in frame 14 and the end of the turn in frames 19-20, the middle sampling strategy gives the most consistent 
similarity scores. Diagonal sampling also does a reasonable job at distinguishing between the two cars, but the 
SAM values exhibit more variability. One reason that middle column sampling of the predicted vehicle location 
gives more consistent scores between frames is that the same parts of the vehicle tend to be observed frame to 
frame. Using random sampling, on the other hand, picks up different parts of the vehicle (and background) in 
different frames and therefore exhibits significantly worse similarity scores. For many of the frames, the 
random sampling strategy is unable to distinguish between the two cars (Fig. 2). 

It is clear that the similarity scores for the middle (and diagonal) sampling change as the orientation of the 
vehicle changes. This is reasonable because the middle line will represent a different part of the car when it is 
traveling east-west to north-south. This hints that the best way to sample in practice will be to adaptively 
change the sampling axis to try to keep it consistent with the orientation of the car. The tracking system will 
keep track of the angle of the car, make a prediction of the location and orientation of the car, and then direct 
the sensor to observe spectral pixels along the line that matches this angle. This adaptive sampling method fits 
perfectly within the DDDAS framework.  

4. Intersection Detection and Multiple Models 

One way to improve prediction and analysis performance is to improve the forecast model by adding 
additional context. Vehicles are more likely to follow road networks, so if we can identify a car and place it on 
a known road, we can gain better control on the uncertainty for its next location. At intersections, where vehicle 

Figure 3: Sample results from the detection of intersections and curvy roads in an image using OpenStreetMap data. 
Different colors represent different templates that have been matched. The process has identified the major intersections 
in this image.  Notice that the templates try to match the width of the roads as well. 



1946   Burak Uzkent et al.  /  Procedia Computer Science   18  ( 2013 )  1939 – 1948 

movement becomes more complex, we can calculate probable paths that the vehicle may take based on the 
known exits from the intersection. 

To identify roads and intersections, we inject OpenStreetMap data into the object tracking system.  The 
OpenStreetMap data are standardized and rasterized, but they are not well registered with the image data due to 
image distortions, topographical change, inaccurate map survey, and other sources of error. To properly register 
the image and map data, intersections, end points, and points with high curvature are selected from the map to 
form templates. Using the map coordinates as a first guess, a search of the extracted image features in 
the neighborhood of the first guess is used to match the templates. This allows us to find the accurate positions 
of intersections and curvy roads on the image. To account for different type of roads, different width values are 
tested during template formation. This process does good job of identifying important intersections in the 
image that the tracked target might approach (Fig. 3.).  

Having identified the location and geometry of the intersections, we then change the prediction model based 
on whether or not the target is in an intersection. Outside of intersections, we apply a standard constant velocity 
model for the targets. When a target is determined to enter an intersection, however, the tracking system uses 
this information to change to a multiple model setup. In the multiple model framework, the geometry of the 
intersection is used to determine the most probable trajectories that the vehicle might take. For example, a 
vehicle determined to be entering a T-junction would use variations on models for turning 90° right and 90° 
left, whereas a vehicle entering a 4-way intersection would have models turning left, right, and going straight. 
Each component of the GSF is randomly assigned a different turning model while in the intersection and the 
forecast uncertainty reflects these different possible trajectories. Using more sophisticated weight updates for 
the GSF components, we should be able to pick out the correct model during the maneuver.  

We find that the RMSE is reduced by between 10-20% during the turning frames using the multiple model 
framework for the truck (seen in Fig. 1) when it enters the intersection (Fig. 4). Moreover, the analysis 
uncertainty estimate of the target given by the elements of the GSF is more accurate using the multiple models.  
In many frames, the constant velocity model experiments have the true center of the target (green dot in Fig. 1) 

Figure 4: RMSE, during frames where the truck is turning, of the analysis after assimilating the observations (black) 
using a constant velocity model (red) and multiple turning models (blue). 
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outside the spread of the particles of the GSF (red in Fig. 1). When multiple turning models are used, on the 
other hand, the analysis uncertainty (blue in Fig. 1) contains the true center. Similar results are seen in other 
tracking scenarios. 

5. Summary 

The framework for an object tracking DDDAS has been implemented, consisting of an airborne adaptive 
sensor capable of taking spectral data in a sparse number of pixels and a Gaussian Sum Filter based data 
assimilation system. The system brings in additional data, as needed, from OpenStreetMap in order to identify 
road networks and intersections. The intersection location and geometry is then used change the prediction 
model to a multiple model framework where the different models represent different likely turning 
trajectories when targets are in intersections 

A feature matching system is also implemented and two metrics Bhattacharyya and SAM measures are 
evaluated for distinguishing between new and previously seen vehicles. We determine that the SAM measure is 
more suitable for this application, considering the small number of spectral pixels available from the adaptive 
sensor. Using SAM, we compare three different sampling strategies which the tracking system can use when 
guiding the measurements using the RITMOS instrument. It is found that taking hyperspectral information 
along the middle column of the predicted target location provided the most consistent and accurate performance 
in distinguishing between the multiple vehicles. Sampling along a fixed axis can be problematic when the 
orientation of the tracked vehicle changes, so we have begun implementing an adaptive strategy to match the 
axis of the sampling with the predicted angle of the vehicle at each frame.  

The pixels that take spectral data must be allocated based on the last known location of the vehicle and the 
model prediction. This results in more background pixels being sampled and, consequently, a reduced 
performance of the feature matching. Future work will continue to improve the prediction model to improve the 
selection of which pixels to task as hyperspectral. In addition, we will incorporate knowledge of the 
background into the decision mechanism. This background information can be collected simultaneously by 
using hyperspectral information away from targets.  

One current strategy to improve prediction and analysis results is using multiple prediction models when the 
vehicle is in an intersection. From the image and OpenStreetMap data, the geometry of the intersection is found 
and possible turning arcs are computed. When a vehicle enters the intersection, the different components of the 
GSF are given different turning models which correspond to our uncertainty in which direction the vehicle will 
go. In initial testing, the use of multiple models has reduced the analysis RMSE in our tracking and given a 
better estimate of the analysis uncertainty than when using a single, constant velocity model.  
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