

ROCHESTER INSTITUTE OF TECHNOLOGY COURSE OUTLINE FORM

COLLEGE OF SCIENCE

Chester F. Carlson Center for Imaging Science

NEW COURSE: COS-IMGS-732 - Advanced Environmental Applications of Remote Sensing X

1.0 Course Designations and Approvals

Required course approvals:	Approval request date:	Approval granted date:
Academic Unit Curriculum Committee	7/30/2010	3/15/2011
College Curriculum Committee	9/28/2011	10/11/2011

Optional designations:	Is designation desired?	*Approval request date:	**Approval granted date:
General Education:	No		
Writing Intensive:	No		
Honors	No]	

2.0 Course information:

Course title:	Advanced Environmental Applications of Remote Sensing	
	X	
Credit hours:	3	
Prerequisite(s):	IMGS-431, PHYS-112, or permission of instructor	
Co-requisite(s):	None	
Course proposed by:	Jan van Aardt	
Effective date:	Fall 2013	

	Contact hours	Maximum students/section
Classroom	2	20
Lab	3	20
Studio		
Other (specify)		

2.1 Course Conversion Designation (Please check which applies to this course)

Х	Semester Equivalent (SE) Please indicate which quarter course it is equivalent to:
	1051-753 Advanced Environmental Applications of Remote Sensing
	Semester Replacement (SR) Please indicate the quarter course(s) this course is replacing:
	New

2.2 Semester(s) offered (check)

	· /					
Fall	Spring	Х	Summer		Other	
A 11				16	11 1	

All courses must be offered at least once every 2 years. If course will be offered on a biannual basis, please indicate here:

2.3 Student Requirements

Students required to take this course: None

Students who might elect to take the course: Imaging Science, Environmental Science, Math, Physics, Computer Science, Engineering

3.0 Goals of the course (including rationale for the course, when appropriate):

- 3.1 To advance understanding of the potential applications of remote sensing to natural resource assessment, as presented in the first course on this topic (COS-IMGS-431).
- 3.2 To develop advanced remote sensing analysis concepts, beyond sensors and image pre-processing, as these apply to natural resource assessment.
- 3.3 To better comprehend context-specific electromagnetic radiation and target responses, advanced classifiers, and remote sensing for structural assessment.
- 3.4 To reinforce concepts with state-of-the-art remote sensing hardware (field instrumentation and airborne imaging systems (commercial, research, and RIT-developed)) and software, as well as real-world examples of applications.

4.0 Course description

IMGS-732 Advanced Environmental Applications of Remote Sensing X This course will focus on a broader selection of analytical techniques with an applicationcentric presentation. These techniques include narrow-band indices, filtering in the spatial and frequency domains, principal component analysis, textural analysis, hybrid and object-oriented classifiers, change detection methods, and structural analysis. All of these techniques are applied to assessment of natural resources. Sensing modalities include imaging spectroscopy (hyperspectral), multispectral, and light detection and ranging (lidar) sensors. Applications such as vegetation stress assessment, foliar biochemistry, advanced image classification for land use purposes, detecting change between image scenes, and assessing topography and structure in forestry and grassland ecosystems (volume, biomass, biodiversity) and built environments will be examined. Real-world remote sensing and field data from international, US, and local sources are used throughout this course. Students will be expected to perform a more comprehensive final project and homework assignments, including literature review and discussion and interpretation of results. (IMGS-431, PHYS-112, or permission of instructor) Class 2, Lab 3, Credit 3 (F)

5.0 Possible resources (texts, references, computer packages, etc.)

- 5.1 Jensen, *Remote Sensing of the Environment An Earth Resource Perspective*, Prentice-Hall, Upper Saddle River, NJ.
- 5.2 Lillesand, Kiefer, and Chipman, *Remote Sensing and Image Interpretation*, Wiley, Hoboken, NJ
- 5.3 Environment for Visualizing Images (ENVI) software package.

6.0 Topics (outline):

6.1 Energy-Matter Interactions

6.1.1 Water

- 6.1.1.1 Spectral properties of water bodies
- 6.1.1.2 Implications for applications

6.1.2 Geology

- 6.1.2.1 Spectral properties of soil
- 6.1.2.2 Reflectance properties of minerals
- 6.1.2.3 Reflectance properties of rocks

6.1.3 Vegetation

- 6.1.3.1 Spectral properties of vegetation
- 6.1.3.2 Implications for applications
- 6.1.4 Spectral profiles and libraries

6.2 Applications of spectral image analysis

6.2.1 Band ratioing and vegetation indices (*foliar/canopy biochemistry*)

- 6.2.1.1 Standard vegetation indices
- 6.2.1.2 Narrow-band indices
- 6.2.2 Frequency and spatial domain filtering (*noise removal/texture*)
- 6.2.3 Principal components analysis (species classification)
- 6.2.4 Hybrid *classifiers* (guided clustering and IGSCR)
- 6.2.5 Object-oriented classification
- 6.2.6 Change detection
 - 6.2.6.1 Image differencing methods
 - 6.2.6.2 Image normalization

6.3 Lidar analysis for applications

- 6.3.1 Textural analysis
- 6.3.2 Lidar data types
 - 6.3.2.1 Discrete return lidar
 - 6.3.2.2 Waveform lidar
- 6.3.3 Lidar data processing
 - 6.3.3.1 Error checking
 - 6.3.3.2 Point classification
 - 6.3.3.3 Surface derivation (interpolation)
 - 6.3.3.4 Structural analysis
- 6.3.4 Lidar applications
 - 6.3.4.1 Topography (hydrology/surface characterization)
 - 6.3.4.2 Built environments (building modeling)
 - 6.3.4.3 Forestry and ecosystems (biomass assessment)

7.0	Intended course learning outcomes and associated assessment methods of
	those outcomes

Course Learning Outcome	Quizzes	Homework	Project
7.1 Recognize the fundamental background to natural resource remote sensing in terms of light-matter interactions	X		X
7.2 Apply spatial and spectral remote sensing analysis using ENVI software	X	X	
7.3 Apply advanced classification, change detection, vegetation condition assessment, and structural analysis approaches	X	X	
7.4 Demonstrate graduate-level, independent analysis on a project topic of choice			X
7.5 Perform advanced literature review and result discussion/interpretation for assignments		X	X

8.0 **Program outcomes and/or goals supported by this course**

- 8.1 To provide students with a depth and breadth of imaging science.
- 8.2 To develop the student's capacity for critical thinking.
- 8.3 To apply advanced imaging analysis approaches, introduced as part of the prerequisite courses or covered in program core courses, to environmental applications.

9.0	
General Education Learning Outcome Support Course	ted by the Assessment Method
Communication	
Express themselves effectively in common college-	level
written forms using standard American English	
Revise and improve written and visual content	
Express themselves effectively in presentations, eith	ner in
spoken standard American English or sign language	(American
Sign Language or English-based Signing)	
Comprehend information accessed through reading	and
discussion	
Intellectual Inquiry	·
Review, assess, and draw conclusions about hypoth	eses and
theories	
Analyze arguments, in relation to their premises, as	sumptions,
contexts, and conclusions	_
Construct logical and reasonable arguments that inc	lude
anticipation of counterarguments	
Use relevant evidence gathered through accepted sc	holarly
methods and properly acknowledge sources of infor	mation
Ethical, Social and Global Awareness	
Analyze similarities and differences in human expen	riences and
consequent perspectives	
Examine connections among the world's population	IS
Identify contemporary ethical questions and relevan	t
stakeholder positions	
Scientific, Mathematical and Technological Literacy	
Explain basic principles and concepts of one of the sciences	natural
Apply methods of scientific inquiry and problem so	lving to
Commend and evaluate methometical and statisti	
information	
Perform college-level mathematical operations on a	uantitative
data	
Describe the potential and the limitations of technol	ogy
Use appropriate technology to achieve desired outco	omes
Creativity, Innovation and Artistic Literacy	I
Demonstrate creative/innovative approaches to cour	rse-based
assignments or projects	
Interpret and evaluate artistic expression considerin	g the
cultural context in which it was created	

10.0 Other relevant information (such as special classroom, studio, or lab needs, special scheduling, media requirements, etc.)

- 10.1 A computer lab with ArcGIS/ERDAS Imagine/ENVI installations.
- 10.2 Student access to licensing for ENVI software.