Evaluating the CIE 1931 Color Matching Functions

Mark Shaw
Munsell Color Science Laboratory

Thesis Advisor : Mark Fairchild
Presentation Overview

- Aim and Objectives
- Metameric Data Sets
- Computational Analysis
- Deriving an Optimized Set of Weighing Functions
- CRT Simulation
- Conclusions
Aim and Objectives

Aim
- To test the accuracy of the CIE Color Matching Functions
- Benchmark performance against other weighting functions

Objectives
- Perform computational analysis
- Derive an optimized set of weighing functions
- Develop a CRT Simulation
Background

- CIE 1931 Color Matching Functions
 - Constructed from relative color matching data of Wright (1928-9), and Guild (1931)
 - Assumptions
 - Tri-chromacy
 - $V\lambda$ is a linear combination of the 3 weighing functions
 - Grassmann’s Laws
Background

- **Stiles Verification**
 - An investigation encouraged by a CIE committee
 - Concern specifically focussed on
 - Use of V_λ
 - Discrepancies between perceived and measured colors
 - Applicability to large visual fields
 - Stiles report showed significant differences, but not large enough to warrant a change in the standard data.
Background

- Vision Research
 - Many scientists have questioned the work of the CIE
 - Vos and Walraven (1970)
 - Smith and Pokorny (1971)
 - Stockman, MacLeod and Johnson (1983)
 - Stockman and Sharpe (1998)
Thesis Foundation

- Evaluate the CIE 1931 Color Matching Functions
 - Are the claims valid or insignificant
 - What kind of a difference will a new set of functions make

- Metameric color matching data
 - Test weighting functions with ‘visual matches’
 - Using multiple observers
● Derive an Optimized Set of Weighting Functions
 - Can one improve on the CIE
 - How does observer metamerism affect the results

● CRT Simulation
 - Side by side comparison
Metameric Data Sets

- 3 Data Sets Used
 - Alfvin, 1995
 - Shaw, 1998
 - Shaw, 1999

- Underlying Concept
 - An ideal set of weighing functions will yield a minimal average color difference over all matches
Alfvin Data Set

- Cross media color match
- 7 color centers
- 20 Observers
CRT - Hardcopy Match

Color matches are inherently metameric

Evaluating the CIE 1931 Color Matching Functions
Shaw ‘98 Data Set

- ACS VCS additive color mixture device
- Munsell N5 gray
- 2 primary sets - RGB and BYP
- 6 Observers
Shaw ‘99 Data Set

- Identical experimental setup to Shaw ‘98
- Matching Fujix neutral gray
- 4 Observers
- 2 Primary Sets - RGB and GYP
- 10 matches per observer, per primary set
Color Space Comparison

- How can one compare the accuracy of different sets of weighting functions?
 - What metric should one use?
 - In which color space?
 - How can one compare the results?
Tristimulus Rotation

- Rotate each set of weighting functions to CIE approximation
- Use a linear transformation matrix

\[
\begin{bmatrix}
 x_{400} & y_{400} & z_{400} \\
 \vdots & \vdots & \vdots \\
 x_{700} & y_{700} & z_{700}
\end{bmatrix}
\rightarrow
\begin{bmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23} \\
 a_{31} & a_{32} & a_{33}
\end{bmatrix}
\begin{bmatrix}
 r_{400} & g_{400} & b_{400} \\
 \vdots & \vdots & \vdots \\
 r_{700} & g_{700} & b_{700}
\end{bmatrix}_{\text{Stiles}}
\]
Tristimulus Rotation

Evaluating the CIE 1931 Color Matching Functions
Evaluating the CIE 1931 Color Matching Functions
Tristimulus Calculation and CIELAB

- Tristimulus values
 - Rotated weighing functions
 - Spectral radiance data

- CIELAB Values
 - XnYnZn reference set at 5 times radiance of gray
 - ΔL_{ab}, Δa_{ab}, Δb_{ab} for each pair
 - Color difference using ΔE_{ab} and ΔE_{94}
Statistical Analysis

- **Students t-test**
 - Evaluate the distribution of error
 - Applied to ΔL, Δa, Δb

- **Multivariate 95% Confidence Ellipse**
 - Evaluate multivariate case
 - Defined by sample variances and covariances of ΔL, Δa, Δb
Results - Computational Analysis

CIE 1931 Color Matching Functions

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std Dev</th>
<th>Maximum</th>
<th>Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE</td>
<td>4.560</td>
<td>3.018</td>
<td>22.300</td>
<td>0.223</td>
</tr>
<tr>
<td>DE 94</td>
<td>3.412</td>
<td>2.409</td>
<td>13.470</td>
<td>0.000</td>
</tr>
<tr>
<td>DL</td>
<td>0.332</td>
<td>2.696</td>
<td>13.410</td>
<td>-13.100</td>
</tr>
<tr>
<td>Da</td>
<td>-0.754</td>
<td>2.696</td>
<td>15.440</td>
<td>-8.384</td>
</tr>
<tr>
<td>Db</td>
<td>0.681</td>
<td>3.260</td>
<td>18.030</td>
<td>-21.000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Critical Value</th>
<th>Test Statistic</th>
<th>P Value</th>
<th>Decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>DL</td>
<td>1.965</td>
<td>2.668</td>
<td>0.004</td>
<td>Reject Null</td>
</tr>
<tr>
<td>Da</td>
<td>1.965</td>
<td>-4.935</td>
<td>0.000</td>
<td>Reject Null</td>
</tr>
<tr>
<td>Db</td>
<td>1.965</td>
<td>4.516</td>
<td>0.000</td>
<td>Reject Null</td>
</tr>
</tbody>
</table>

CIE 1964 Color Matching Functions

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std Dev</th>
<th>Maximum</th>
<th>Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE</td>
<td>4.017</td>
<td>2.970</td>
<td>22.720</td>
<td>0.429</td>
</tr>
<tr>
<td>DE 94</td>
<td>2.818</td>
<td>2.087</td>
<td>13.780</td>
<td>0.000</td>
</tr>
<tr>
<td>DL</td>
<td>0.260</td>
<td>2.712</td>
<td>13.650</td>
<td>-13.260</td>
</tr>
<tr>
<td>Da</td>
<td>-0.029</td>
<td>2.712</td>
<td>12.270</td>
<td>-8.756</td>
</tr>
<tr>
<td>Db</td>
<td>0.321</td>
<td>3.143</td>
<td>18.250</td>
<td>-22.170</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Critical Value</th>
<th>Test Statistic</th>
<th>P Value</th>
<th>Decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>DL</td>
<td>1.965</td>
<td>2.070</td>
<td>0.020</td>
<td>Reject Null</td>
</tr>
<tr>
<td>Da</td>
<td>1.965</td>
<td>-0.224</td>
<td>0.411</td>
<td>Fail to Reject</td>
</tr>
<tr>
<td>Db</td>
<td>1.965</td>
<td>2.208</td>
<td>0.014</td>
<td>Reject Null</td>
</tr>
</tbody>
</table>

Stiles and Burch Color Matching Functions

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std Dev</th>
<th>Maximum</th>
<th>Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE</td>
<td>4.142</td>
<td>2.911</td>
<td>23.200</td>
<td>0.287</td>
</tr>
<tr>
<td>DE 94</td>
<td>3.007</td>
<td>2.133</td>
<td>13.640</td>
<td>0.216</td>
</tr>
<tr>
<td>DL</td>
<td>0.295</td>
<td>2.700</td>
<td>13.580</td>
<td>-13.160</td>
</tr>
<tr>
<td>Da</td>
<td>-0.537</td>
<td>2.700</td>
<td>14.450</td>
<td>-8.557</td>
</tr>
<tr>
<td>Db</td>
<td>-0.065</td>
<td>3.137</td>
<td>17.620</td>
<td>-22.870</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Critical Value</th>
<th>Test Statistic</th>
<th>P Value</th>
<th>Decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>DL</td>
<td>1.965</td>
<td>2.367</td>
<td>0.009</td>
<td>Reject Null</td>
</tr>
<tr>
<td>Da</td>
<td>1.965</td>
<td>-4.071</td>
<td>0.000</td>
<td>Reject Null</td>
</tr>
<tr>
<td>Db</td>
<td>1.965</td>
<td>-0.451</td>
<td>0.326</td>
<td>Fail toReject</td>
</tr>
</tbody>
</table>

Evaluating the CIE 1931 Color Matching Functions
Results - Computational Analysis

Demarco, Smith and Pokorny Cone Fundamentals

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std Dev</th>
<th>Maximum</th>
<th>Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE</td>
<td>4.364</td>
<td>2.939</td>
<td>23.210</td>
<td>0.350</td>
</tr>
<tr>
<td>DE 94:</td>
<td>3.240</td>
<td>2.225</td>
<td>13.480</td>
<td>0.000</td>
</tr>
<tr>
<td>DL</td>
<td>0.350</td>
<td>2.697</td>
<td>13.410</td>
<td>-13.040</td>
</tr>
<tr>
<td>Da</td>
<td>-0.255</td>
<td>2.697</td>
<td>15.930</td>
<td>-8.107</td>
</tr>
<tr>
<td>Db</td>
<td>-0.232</td>
<td>3.179</td>
<td>16.890</td>
<td>-22.800</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Critical Value</th>
<th>Test Statistic</th>
<th>P Value</th>
<th>Decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>DL</td>
<td>1.965</td>
<td>2.810</td>
<td>0.003</td>
<td>Reject Null</td>
</tr>
<tr>
<td>Da</td>
<td>1.965</td>
<td>-1.737</td>
<td>0.042</td>
<td>Fail to Reject</td>
</tr>
<tr>
<td>Db</td>
<td>1.965</td>
<td>-1.580</td>
<td>0.057</td>
<td>Fail to Reject</td>
</tr>
</tbody>
</table>

Stockman, MacLeod and Johnson Cone Fundamentals

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std Dev</th>
<th>Maximum</th>
<th>Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE</td>
<td>4.142</td>
<td>2.909</td>
<td>23.180</td>
<td>0.288</td>
</tr>
<tr>
<td>DE 94:</td>
<td>2.997</td>
<td>2.136</td>
<td>13.640</td>
<td>0.000</td>
</tr>
<tr>
<td>DL</td>
<td>0.296</td>
<td>2.700</td>
<td>13.580</td>
<td>-13.160</td>
</tr>
<tr>
<td>Da</td>
<td>-0.540</td>
<td>2.700</td>
<td>14.450</td>
<td>-8.568</td>
</tr>
<tr>
<td>Db</td>
<td>-0.056</td>
<td>3.136</td>
<td>17.620</td>
<td>-22.840</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Critical Value</th>
<th>Test Statistic</th>
<th>P Value</th>
<th>Decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>DL</td>
<td>1.965</td>
<td>2.358</td>
<td>0.009</td>
<td>Reject Null</td>
</tr>
<tr>
<td>Da</td>
<td>1.965</td>
<td>-4.089</td>
<td>0.000</td>
<td>Reject Null</td>
</tr>
<tr>
<td>Db</td>
<td>1.965</td>
<td>-0.383</td>
<td>0.351</td>
<td>Fail to Reject</td>
</tr>
</tbody>
</table>

Vos and Walraven Cone Fundamentals

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std Dev</th>
<th>Maximum</th>
<th>Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE</td>
<td>4.365</td>
<td>2.939</td>
<td>23.220</td>
<td>0.350</td>
</tr>
<tr>
<td>DE 94:</td>
<td>3.242</td>
<td>2.222</td>
<td>13.480</td>
<td>0.350</td>
</tr>
<tr>
<td>DL</td>
<td>0.351</td>
<td>2.697</td>
<td>13.410</td>
<td>-13.040</td>
</tr>
<tr>
<td>Da</td>
<td>-0.249</td>
<td>2.697</td>
<td>15.940</td>
<td>-8.104</td>
</tr>
<tr>
<td>Db</td>
<td>-0.238</td>
<td>3.178</td>
<td>16.880</td>
<td>-22.810</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Critical Value</th>
<th>Test Statistic</th>
<th>P Value</th>
<th>Decision</th>
</tr>
</thead>
<tbody>
<tr>
<td>DL</td>
<td>1.965</td>
<td>2.813</td>
<td>0.003</td>
<td>Reject Null</td>
</tr>
<tr>
<td>Da</td>
<td>1.965</td>
<td>-1.694</td>
<td>0.045</td>
<td>Fail to Reject</td>
</tr>
<tr>
<td>Db</td>
<td>1.965</td>
<td>-1.620</td>
<td>0.053</td>
<td>Fail to Reject</td>
</tr>
</tbody>
</table>
95% Confidence Ellipses - $\Delta a \Delta b$

CIE 1931 Color Matching Functions

CIE 1964 Color Matching Functions

Evaluating the CIE 1931 Color Matching Functions
95% Confidence Ellipses - $\Delta L\Delta a$

CIE 1931 Color Matching Functions

CIE 1964 Color Matching Functions

Evaluating the CIE 1931 Color Matching Functions
95% Confidence Ellipses - $\Delta L \Delta b$

CIE 1931 Color Matching Functions

CIE 1964 Color Matching Functions

Evaluating the CIE 1931 Color Matching Functions
Summary of Results

- **Combined Data Sets**
 - CIE 1931
 - Average ΔE_{ab} 4.56
 - Std Dev 3.02
 - Average ΔE_{94} 3.41
 - Std Dev 2.41
 - CIE 1964
 - Average ΔE_{ab} 4.02
 - Std Dev 2.97
 - Average ΔE_{94} 2.82
 - Std Dev 2.09

- Tests indicate CIE 1931 is not centered at 0

- Every set of weighting functions is offset in at least one dimension
Deriving an Optimized Set of Weighting Functions

- Assume the data is truly metameric
- Optimal set - $0\Delta E_{ab}$ Average
- Observer metamerism
- How much low can ΔE_{ab} go?
- Must maintain the integrity of the CMFs
Various Approaches Tried

- Linear Regression
- Linear Regression + Cubic Splines
- Unconstrained Non-linear - Powell
- Constrained Non-linear - Levenberg-Marquardt
- Monte Carlo
- Newton's Variation
Important Attributes

- Optimized functions must be smooth
- Output functions must be ‘realistic’
- Optimize over combined data sets
Best Method

- Constrained Non-Linear

\[\bar{x}_{\text{optimum}} = \sum_{j=1}^{6} w_j C_j \quad \rightarrow \quad w_j = \text{Arg min} \Delta E_{\text{rotated}} \]

where

- \(\bar{x}_{\text{optimum}} \) = Optimized weighting function
- \(w_j \) = \(j \)th Weight
- \(C_j \) = \(j \)th Rotated Weighting Function

constraint

\[w_1 = 1 - w_2 - w_3 - w_4 - w_5 - w_6 \]
Constrained Non-linear

1. Estimate Weights
2. Create Functions
3. Rotate Functions
 - Reference Spectra
 - Sample Spectra
4. Calculate XYZs
5. Calculate Lab’s
6. Calculate ΔE_{ab}
7. Re-estimate Weights

Evaluating the CIE 1931 Color Matching Functions
Optimized Weighting Functions

- **Average**
 - ΔE_{ab} 3.92
 - ΔE_{94} 2.78

- **Shift in peak sensitivity of \bar{z} function**

- **Change in \bar{x} below 460nm**
Optimization Summary

- 14 optimization techniques were tried
- Improvement was only $0.1 \Delta E_{ab}$

<table>
<thead>
<tr>
<th>CIE 1964 Color Matching</th>
<th>Shaw and Fairchild Color Matching</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>Mean</td>
</tr>
<tr>
<td>Std Dev</td>
<td>Std Dev</td>
</tr>
<tr>
<td>DE</td>
<td>4.017</td>
</tr>
<tr>
<td>DE 94:</td>
<td>2.818</td>
</tr>
<tr>
<td>DL</td>
<td>0.260</td>
</tr>
<tr>
<td>Da</td>
<td>-0.029</td>
</tr>
<tr>
<td>Db</td>
<td>0.321</td>
</tr>
</tbody>
</table>

Evaluating the CIE 1931 Color Matching Functions
CRT Simulation

● Purpose
 - Simulate the differences between each set of weighting functions

● Calibration
 - GOG Model
 - Spectrally Calibrated
CRT Modeling

Determining Flare XYZ to RGB transform

GOG Model

XYZ\textsubscript{CIE31}

XYZ\textsubscript{CIE64}

XYZ\textsubscript{Stiles}

XYZ\textsubscript{Demarco}

XYZ\textsubscript{Stockman}

XYZ\textsubscript{Vos}

XYZ\textsubscript{Shaw}

RGB\textsubscript{CIE31}

RGB\textsubscript{CIE64}

RGB\textsubscript{Stiles}

RGB\textsubscript{Demarco}

RGB\textsubscript{Stockman}

RGB\textsubscript{Vos}

RGB\textsubscript{Shaw}

Evaluating the CIE 1931 Color Matching Functions
CRT Simulation

Viewing Booth

PhotoResearch

CRT

Evaluating the CIE 1931 Color Matching Functions
CRT Simulation

Evaluating the CIE 1931 Color Matching Functions
Conclusions

- The performance of all sets of functions were similar
- CIE 1964 10° functions performed best
- CIE 1931 2° functions performed worst
- Only 0.5ΔE_{ab} difference
- Optimized functions only attained 0.1ΔE_{ab} improvement
Conclusions

- Simulation exemplifies differences
- Observer Metamerism is an important consideration
 - Less emphasis on accuracy of weighing functions
 - Observer variance is far greater
Acknowledgements

- Mark Fairchild
 - Thesis Advisor

- Noboru Ohta
 - Computational Advisor

- Munsell Laboratory Staff and Students
 - Their support and encouragement to get this done on time