NIH study seeks to improve quality-of-life measure for deaf and hard-of-hearing people RIT leads $1.6 million study to enhance disability and outcomes research
faculty

Mar. 28, 2016
Susan Gawlowicz

story photo

Poorna Kushalnagar

Improving the health of the deaf and hard-of-hearing population through accessible patient-reported outcome measures is the goal of a $1.6 million National Institutes of Health-funded study, led by Rochester Institute of Technology.

Researchers and providers will, for the first time, have a tool for assessing their deaf and hard-of-hearing patients’ health-related quality-of-life outcomes in American Sign Language. Resulting data will lend new insights in patient outcomes research and improve prevention and treatment models for the underserved deaf and hard-of-hearing population, said Poorna Kushalnagar, a health psychologist and research associate professor in RIT’s Chester F. Carlson Center for Imaging Science.

Patient assessments evaluate symptoms, well-being and life satisfaction, as well as physical, mental and social health. Surveys designed for English speakers present a language barrier for many users of American Sign Language and accessible services, Kushalnagar said.

She and her colleagues at Northwestern University, University of Arkansas Little Rock and Gallaudet University have developed a new profile based on the standard Patient Reported Outcome Measurement Information System, or PROMIS, used in clinical outcomes research. The team modified the PROMIS domains to reflect the experiences of deaf and hard-of-hearing people in English and ASL. The resulting PROMIS-Deaf profile has undergone rigorous cognitive testing with deaf and hard-of-hearing adults and is being used to gather data from a nationwide sample.

A large sample of 650 participants will allow researchers to analyze data from several subgroups within the deaf and hard-of-hearing population, such as by hearing-level, language, gender, ethnicity, race and identification with the lesbian, gay, bisexual, transgender and gay community.

“This project will yield the largest, most representative quality-of-life data set on deaf and hard-of-hearing adults with early deafness,” said Kushalnagar, director of the Deaf Health and Communication and Quality of Life Center in RIT’s Center for Imaging Science.

The NIH grant and supplemental research funding supports three undergraduate researchers and a post-baccalaureate diversity fellow at RIT, as well as a graduate assistant researcher at the University of Arkansas Little Rock.

Kushalnagar’s team includes David Cella, chair and professor of medical social science in the Feinberg School of Medicine at Northwestern University, and Samuel Atcherson, associate professor of audiology at the University of Arkansas Little Rock.

Read More Read Full Story »
Original Source: University News

Growing Up With the Space Race
Cultural Artifact and Document Imaging

Mar. 17, 2016
Roger Easton Jr

Back in December, Motherboard published a short post about the 58th anniversary of the 1957 Vanguard TV-3 (Test Vehicle 3) launch, which was the first American attempt to send a satellite into orbit. We were pleasantly surprised when Roger Easton Jr. reached out with his thoughts on the mission. An accomplished scientist in his own right, Dr. Easton is also the son of Roger Lee Easton, who led Project Vanguard during the 1950s, and later went on to become the inventor and designer of the Global Positioning System (GPS) that has become so ingrained in our everyday lives today.

Dr. Easton graciously obliged to share his memories of growing up alongside Project Vanguard in a post for Motherboard. Fittingly, today is the 58th anniversary of the launch of Vanguard 1, which is now the oldest satellite in orbit. Enjoy.

—Becky Ferreira

 

Among the strongest and clearest memories from my early childhood in the 1950s was being taken outside into the yard early one evening in October 1957 by Mom and Dad to see a moving light in the sky—in the southwest, if I recall correctly. It was the burned-out top stage of the Soviet rocket that launched Sputnik 1.

My other memories of that time are far more vague, but my sister reminds me constantly that Dad wasn’t home much that week, because he was working with his team to switch over the Minitrack satellite tracking system at Blossom Point, MD to pick up radio signals from Sputnik at 20.005 MHz (right next to the US WWV time signal) and 40.002 MHz.

Minitrack was designed to “listen in” at 108.0 MHz and 108.3 MHz, just above the FM radio band, which was much lessoccupied in the 1950s than it is now. The frequency conversion was said to be very difficult, but was eventually successful after some days of frantic effort. It apparently required stringing up an untidy nest of RF coaxial cables. As Dad told it, a Navy liaison officer was somewhat offended by the “unshipshape” nature of that building-wide web of cables, so he took on the personal task of “straightening up” the mess—and the system never worked again (which is a metaphor of some sort).

Blossom Point, Maryland, 1956. Image: Naval Research Laboratory

Dad grew up in rural Vermont, where his father was the town doctor at the time of the Spanish Flu and the Depression. Dad was attracted to science, and was assigned to the Naval Research Laboratory (NRL) after graduating from Middlebury College in 1943. A decade later, he became involved in the early US space program, including “Project Vanguard.”

This phrase had a very fuzzy meaning for me until my second-grade year. The December 1957 issue of National Geographic magazine had a photo of Dad holding the “grapefruit” test satellite. Within a week, the story became even more interesting, when the Vanguard Test Vehicle 3 (TV-3) exploded in spectacular fashion, damaging America's hope of taking back some of the spotlight from the Soviets after their successful launches of Sputniks 1 and 2.

Read More Read Full Story »

RIT researchers among group whose work confirms Einstein’s theories

Detection by international LIGO Collaborative opens new window on the universe with detection of gravitational waves from colliding black holes

story photo

Research at the Center for Computational Relativity and Gravitation at Rochester Institute of Technology explores extreme astrophysical phenomena through Albert Einstein’s general theory of relativity. Several members of the center contributed research to the LIGO Scientific Collaboration that helped confirm Einstein’s prediction of the existence of gravitational waves. Members of the center include, left to right in the front row, Jam Sadiq, John Whelan, Jason Nordhaus, Monica Rizzo, Carlos Lousto and Manuela Campanelli, director; in the second row, Joshua Faber, Brennan Ireland and Naixin (Chris) Kang; in the third row, Yosef Zlochower, Yuanhao (Harry) Zhang and Richard O’Shaughnessy; in the fourth row, Dennis Bowen and Jake Lange; and in the fifth row, Zachary Silberman, Hans-Peter Bischof and James Healy.  (Elizabeth Lamark/RIT Production Services)

Feb. 11, 2016
Susan Gawlowicz

Six Rochester Institute of Technology researchers are among the authors of a paper announcing what may be the most important scientific discovery in a century—findings that confirm the existence of gravitational waves predicted in Albert Einstein’s general theory of relativity.

For the first time, scientists have observed ripples in the fabric of spacetime called gravitational waves, arriving at the Earth from a cataclysmic event in the distant universe. This confirms a major prediction of Albert Einstein’s 1915 general theory of relativity and opens an unprecedented new window onto the cosmos.

Gravitational waves carry information about their dramatic origins and about the nature of gravity that cannot otherwise be obtained. Physicists have concluded that the detected gravitational waves were produced during the final fraction of a second of the merger of two black holes to produce a single, more massive spinning black hole. This collision of two black holes had been predicted but never observed.

The gravitational waves were detected on Sept. 14, 2015, at 5:51 a.m. Eastern Daylight Time (9:51 UTC) by both of the twin Laser Interferometer Gravitational-wave Observatory (LIGO) detectors, located in Livingston, La., and Hanford, Wash. The LIGO Observatories are funded by the National Science Foundation and were conceived, built, and are operated by Caltech and Massachusetts Institute of Technology. The discovery, accepted for publication in the journal Physical Review Letters, was made by the LIGO Scientific Collaboration (which includes the GEO Collaboration and the Australian Consortium for Interferometric Gravitational Astronomy) and the Virgo Collaboration using data from the two LIGO detectors.

RIT researchers listed as co-authors of the paper to be published in Physical Review Letters are John Whelan, associate professor in RIT’s School of Mathematical Sciences and principal investigator of RIT’s group in the LIGO Scientific Collaboration; Richard O’Shaughnessy, assistant professor in the School of Mathematical Sciences; Carlos Lousto, professor in the School of Mathematical Sciences and an American Physical Society Fellow; James Healy, post-doctoral research fellow; and graduate students in RIT’s astrophysical sciences and technology program Jacob Lange and Yuanhao Zhang. They are all members of RIT’s Center for Computational Relativity and Gravitation, a research hub in the College of Science and an RIT Research Center of Excellence, led by Manuela Campanelli, director of the center, professor in the School of Mathematical Sciences and an American Physical Society Fellow.

RIT President Bill Destler lauded the team for its role in this scientific revelation.

“This is a historic day in science, and RIT is thrilled that our researchers played such an important role in this collaboration's profound discovery,” Destler said. “Their commitment to their field and to their research exemplifies what we set out to do at RIT. We are delighted that our university has been able to facilitate their work and look forward to supporting them as they continue their research.”

The LIGO paper prominently cites 2005 landmark research done by Campanelli and her team on binary black hole mergers. Based on this milestone work, Lousto and Healy numerically modeled the merger of a pair of black holes and simulated gravitational waveforms that match the one which LIGO detected.

Campanelli’s team was one of the first to solve Einstein’s strong field equations describing the inspiral, merger and ringdown of binary black hole systems—and simulate colliding black holes on a supercomputer. Her collaborators were Lousto and Yosef Zlochower, an associate professor in RIT’s School of Mathematical Sciences, and Pedro Marronetti, program director of the division of gravitational physics at the National Science Foundation.

Hans-Peter Bischof, RIT professor of computer science and a member of the center and the LIGO Scientific Collaboration, has produced scientific visualizations of their seminal research and subsequent work.

“The LIGO announcement is both a historical and a very emotional moment in science, especially for us, since our research contributed to the identification of the first gravitational wave observation as a binary black hole merger,” Campanelli said.

Whelan and O’Shaughnessy specialize in analyzing gravitational wave data and developing methods for detecting and interpreting gravitational wave signals.

“This discovery kicks off the field of gravitational wave astronomy,” said Whelan, principal investigator of RIT’s group in the collaboration. “For the first time, we’ve observed the universe through the new window opened up by Advanced LIGO.”

O’Shaughnessy’s research connects the gravitational-wave signatures observed by LIGO to the astrophysical sources that produced them. He estimates both the nature of these sources—in this case, a binary black hole—and how they formed.

“LIGO has just made the first direct observation of binary black holes,” O’Shaughnessy said. “The next year or two, as LIGO accumulates more data and makes the first census of binary black holes in the universe, will really transform our understanding of how these systems are made.”

O’Shaughnessy works closely with Lousto and Healy, who use supercomputers to produce accurate numerical simulations of binary black hole systems like the one detected by LIGO.

“It is incredibly exciting to see that our predictions for the merger of two black holes have been so neatly verified by direct observation,” Lousto said.

Black holes are massive stars that have collapsed into compact objects whose gravity is too strong for light to escape. Collisions of black holes produce gravitational waves that ripple through space at the speed of light.

The detection of the first gravitational wave follows the centennial celebration in 2015 of Einstein’s general theory of relativity, which predicted the existence of these waves. They result from strongly gravitating masses like black hole mergers, highly spinning neutron stars and stellar explosions—and from the Big Bang.

Although these waves carry extreme amounts of energy, they couple weakly to matter, and only highly sensitive detectors like LIGO can observe them. Analysis of the shape of gravitational waves can reveal information about the systems that generated them.

LIGO research is carried out by the LIGO Scientific Collaboration, a group of more than 1,000 scientists from universities around the United States and in 14 other countries. More than 90 universities and research institutes in the collaboration develop detector technology and analyze data; approximately 250 students are strong contributing members of the collaboration.

The LIGO Scientific Collaboration’s detector network includes the LIGO interferometers and the GEO600 detector. The GEO team includes scientists at the Max Planck Institute for Gravitational Physics (Albert Einstein Institute, AEI), Leibniz Universität Hannover, along with partners at the University of Glasgow, Cardiff University, the University of Birmingham, other universities in the United Kingdom, and the University of the Balearic Islands in Spain.

LIGO was originally proposed as a means of detecting these gravitational waves in the 1980s by Rainer Weiss, professor of physics, emeritus, from MIT; Kip Thorne, Caltech’s Richard P. Feynman Professor of Theoretical Physics, emeritus; and Ronald Drever, professor of physics, emeritus, also from Caltech.

Virgo research is carried out by the Virgo Collaboration, consisting of more than 250 physicists and engineers belonging to 19 different European research groups: six from Centre National de la Recherche Scientifique (CNRS) in France; eight from the Istituto Nazionale di Fisica Nucleare (INFN) in Italy; two in the Netherlands with Nikhef; the Wigner RCP in Hungary; the POLGRAW group in Poland and the European Gravitational Observatory (EGO), the laboratory hosting the Virgo detector near Pisa in Italy.

The discovery was made possible by the enhanced capabilities of Advanced LIGO, a major upgrade that increases the sensitivity of the instruments compared to the first generation LIGO detectors, enabling a large increase in the volume of the universe probed—and the discovery of gravitational waves during its first observation run.

The U.S. National Science Foundation leads in financial support for Advanced LIGO. Funding organizations in Germany (Max Planck Society), the U.K. (Science and Technology Facilities Council, STFC) and Australia (Australian Research Council) also have made significant commitments to the project. Several of the key technologies that made Advanced LIGO so much more sensitive have been developed and tested by the German UK GEO collaboration.

For more information on the RIT team: https://www.rit.edu/news/story.php?id=54601

For information on CCRG: https://www.rit.edu/news/story.php?id=54596 andhttp://ccrg.rit.edu/

For information on RIT's Black Hole Lab: http://www.rit.edu/news/story.php?id=54591

Read More Read Full Story »
Original Source: University News

Observing planet formation at close range: Gemini Planet Imager’s view of the TW Hya disk
faculty
research
Astronomy and Space Science

Dec. 22, 2015
Joel Kastner

TWHya_GPIpubImage

Investigations of star and planet formation have long focused on the rich stellar nurseries of Taurus, Ophiuchus, Chamaeleon, and a handful of similarly nearby (but lower mass) molecular clouds. These regions, which lie just beyond 100 pc, are collectively host to hundreds of low-mass, pre-main sequence (T Tauri) stars with ages of a few million years and less. They hence provide large samples of stars with orbiting circumstellar disks that span a wide range of evolutionary stages.

Examples of protoplanetary disks that lie closer than ~100 pc to Earth are far fewer and farther between. However — because their proximity affords the maximum possible linear spatial resolution — these nearby disks provide unique opportunities to test theories describing the planet formation process (see http://cosmicdiary.org/geminiplanetimager/2015/09/16/what-do-we-know-about-planet-formation/). Furthermore, the T Tauri star-disk systems within 100 pc of the Sun tend to be older, on average, than the large numbers of star-disk systems that are still found in or near their natal dark clouds. Hence, circumstellar disks orbiting the nearest known young stars are particularly informative about the late stages of planet formation, as disks disperse and any planets born therein are reaching their final masses (for a brief overview of the study of nearby young stars, see 2015arXiv151000741K).

TW Hydrae was the first of these nearby T Tauri stars to be identified, and remains the best-studied such system. At just 54 pc from Earth and a ripe young age of roughly 8 million years, this nearly solar-mass star and its orbiting, circumstellar disk of dust and gas has become a “go-to” target for new imaging facilities seeking to demonstrate their capabilities. For example, TW Hya has already been the subject of a significant number of ALMA First Light and Early Science programs aimed at investigating the chemistry and structure of its 200-AU-diameter disk.

Hence, when Gemini Planet Imager (GPI) became available for Early Science observations last year, TW Hya beckoned. Given GPI’s potential to perform diffraction-limited, coronagraphic near-infrared imaging on the 8-meter Gemini South telescope, GPI imaging of TW Hya offered the chance to image a protoplanetary disk in its giant planet and Kuiper Belt formation (~10-50 AU) regions at a jaw-dropping ~1.5 AU resolution. In combination with GPI’s polarimetric capability, such observations can tease out the faint signature of starlight scattered off circumstellar dust, potentially yielding an unprecedently detailed view of the surface of the nearly face-on disk.

Our team’s observations of TW Hya were challenging for GPI; the star lies at the faint end of the useful range of its adaptive optics (AO) unit. But our team had successfully imaged the circumbinary disk orbiting the close binary T Tauri system V4046 Sgr with GPI (Rapson et al. 2015ApJ…803L..10R), a system very similar to TW Hya in many respects (including its I magnitude). So we had hope for TW Hya as well.

TWHya_GPIpubImage

The GPI observations of TW Hya did not disappoint. These new GPI coronagraphic/polarimetric AO images confirm the presence of a dark gap in the TW Hya disk at 23 AU that was previously tentatively identified via near-infrared imaging with the Subaru telescope (Akiyama et al. 2015ApJ…802L..17A). The GPI imaging furthermore clearly resolve the disk gap, allowing us to measure its width (~5 AU) and depth (~50%) and thereby facilitating direct comparison with detailed numerical simulations of planets forming in circumstellar disks. The comparisons we have carried out thus far (see above) indicate that the 5-AU-wide gap’s observed structure could be generated by a sub-Jupiter-mass planet orbiting within the disk at a position roughly equivalent to that of Uranus in our solar system. For the gory details, see Rapson et al. (2015ApJ…815L..26).

Further scrutiny of the TW Hya disk with GPI and SPHERE in their differential coronagraphic imaging modes may yield direct detection of the planet(s) that appears to be actively carving a gap in the TW Hya disk — especially if the putative planet is still actively accreting gas from the disk. There are other possible explanations for the formation of gaps and rings in disks, however. In particular, dust grain fragmentation and ice condensation rates may change rapidly with disk radius, yielding sharp variations in small grain surface densities and/or reflective properties that can produce the appearance of disk gaps when imaged in scattered starlight. Or the inner regions of the disk may be partially shadowing exterior regions. ALMA imaging of the TW Hya disk should provide definitive tests of these alternative scenarios for the gap at 23 AU seen in our GPI imaging.

-Joel Kastner (Center for Imaging Science and School of Physics & Astronomy, Rochester Institute of Technology)

Read More Read Full Story »
Original Source: cosmicdiary.org

Campus Spotlight

campus spotlight photo

Jan. 14, 2016
A. Sue Weisler

Roger Easton, professor in the Chester F. Carlson Center for Imaging Science, uses multispectral imaging to uncover hidden text from historical objects. He is spending the intersession in Chartres, France, imaging fragments of manuscripts damaged in WWII bombings.

Getting looped: RIT engineering and imaging science students move on to next phase of SpaceX Hyperloop competition
Student Stories
Undergraduate

Two undergraduate teams make the cut with designs for futuristic tube travel

Dec. 11, 2015
Michelle Cometa

story photo

Team Two is Tyler Kuhns, second-year imaging science, Hamburg, N.Y.; Ryan Hartzell, second-year imaging science, Danielsville, Pa.; Zachary Assenmacher, second-year physics, Danielsville, Pa.; Jeff Maggio, second-year imaging science, Cincinnati, Ohio; Nate Dileas, second-year imaging science, Buffalo, N.Y.; Emily Faw second-year motion picture science, Sellersville, Pa.; Catherine Meininger, second-year motion picture science, Oklahoma City, Okla.; and Kristina Carucci second-year imaging science, Massapequa Park, N. Y. Faculty advisors are imaging professors Harvey Rhody and Joe Pow.

Two teams of undergraduates from Rochester Institute of Technology beat out universities, companies and individuals from around the world and had their preliminary designs accepted for the SpaceX Hyperloop Pod Competition Design Weekend. Of the 1,200 designs submitted, only 318 teams from 162 universities in 16 countries are advancing to the first phase of the design process and presenting their unique designs Jan. 29-30 atTexas A & M University.

The Hyperloop is a futuristic high-speed rail system with multi-passenger, solar-powered “pods,” or capsules, speeding through a series of depressurized tubes. Elon Musk first proposed the Hyperloop idea in 2013, and his company, SpaceX, is one of several seeking to accelerate the development of a system prototype. He proposed a national challenge—to build a scaled-down pod model and necessary sub-systems. After several competition phases, Musk intends to hold a final contest in June at SpaceX headquarters in Hawthorne, Calif., where a Hyperloop test track is being built.

Trying to get from this first design phase to the finals are two groups of undergraduates from RIT’s Kate Gleason College of Engineering and the Chester F. Carlson Center for Imaging Science. All are only second or third-year students who have yet to start co-ops or major design projects within their programs, but who believe their Hyperloop ideas have the potential to make an impact on high-speed travel, said Willow Baker, a mechanical engineering major and leader for RIT Team One.

“This whole competition is just a large brainstorm for this really huge idea. Get as many minds on a problem as you can, and it’s going to be solved that much faster, with that many more different approaches to the problem,” Baker said.

The six engineering students she is working with are designing a full pod. They are fine-tuning a full proposal complete with designs for the levitation system with a flexible barrier they call the “skirt” to maintain the air bearings, and a modular regenerative braking system.

“We were able to make comparisons for our system to other things we found in the real world like the takeoff and landing gears on airplanes, or like an air hockey table with the little openings that release air and try to trap the air under the game pieces so that they levitate. The Hyperloop is a new application that combines a lot of pre-existing technology,” said Baker, who is from Blue Bell, Pa.

Teams have the option of presenting a full-pod proposal or details related to one of the Hyperloop’s sub-systems. They will be required to present a working prototype plan, as well as the process to build the equipment, materials used and cost estimates for manufacturing the pod. They will be judged by university and corporate engineers.

Led by Kristina Carucci, RIT Team Two developed two sub-systems: a high-speed communications system and a sensor system to detect faults in the walls of the tube that could impede the motion of the pod. Both are relatively new technologies being enhanced so they can be applied to a higher speed environment, she said.

“It is an entirely imaging-based method. Other traditional methods that are used to scan tubes, like oil pipelines, would not work in this case,” said Carucci, a second-year imaging science student from Massapequa Park, N. Y. “Scanning the walls of the tube will use what is called ‘structured light,’ and it is commonly used to make 3D maps of stationary objects for scientific purposes. But it has never been used at such high speeds.

“Our proposed optical communications system will far exceed the current communications model in place. Not to mention, this would be the first time a system like ours could be used in a environment like the Hyperloop tube.”

Each of the teams had access to faculty from their colleges and took advantage of that expertise to learn more about successfully building mathematical models and to act as panelists similar to the ones that will question them at the Challenge in Texas about their new technologies. Over RIT’s holiday break in December, both teams will finalize designs, cost estimates, specifications and 3D models of components as well as simulations to verify that designs could work.

But futuristic models still have some real-world concerns. As both teams refine design specs they are also strategizing how to get to Texas for the competition. Managing prescribed budgets for a project plan is different than finding funds—and each team recognized that it is a different skill set and that they could be successful if they joined forces.

“The first thing I said to the team was, ‘Guys, we don’t know much, but there’s very little that we can’t learn.’ So we went and found what we needed to know—and it wouldn’t have been possible without the Internet,” said Baker, laughing. “It was just attempting to use our brains and the Internet, and going for it. And we are all attempting to see if we can figure out together how to get there.”

Read More Read Full Story »
University News

USRA Announces 2015 Scholarship Award Winners
Student Stories
Awards/Recognition

CIS senior Elizabeth Bondi wins prestigous McGetchin Award

Oct. 14, 2015
Dr. James Lochner

Image:Left to Right: Risa Robinson (Professor, Mechanical Engineering, RIT); Anthony Hennig (Student, Mechanical Engineering); Zoran Ninkov (Professor, Center for Imaging Science, COI Representative, Rochester Institute of Technology); Elizabeth Bondi (Student, Center for Imaging Science); Mihail Barbosu (Professor, Mathematics). 

The Universities Space Research Association (USRA) is proud to announce the 2015 winners of the annual USRA Scholarship Awards. USRA's scholarship selection committee has chosen an outstanding group of students in physical science and engineering disciplines from universities across the United States. These students have shown deep interest in space-related careers and research.

Among the winners is Ms. Elizabeth Bondi, a senior imaging science major at the Rochester Institute of Technology, who won the Thomas R. McGetchin Memorial Scholarship Award, which honors Dr. McGetchin's contributions to planetary science. Bondi is a highly-motivated, in-depth learner, and has applied her imaging science expertise to historical documents and planetary imagery. As an intern at NASA's Jet Propulsion Laboratory, she characterized landing sites for the Insight Mars mission and also planned the test flight program for the proposed Mars Helicopter for the Mars 2020 Rover. She has also presented papers at STEM education conferences on project based learning and peer evaluations. 

Original Source: USRA Press Release

When Ancient Texts Vanish, These Scientists Make Them Reappear
faculty
Cultural Artifact and Document Imaging

Sep. 29, 2015
Jake Rossen

(Image credit: Chet Van Duzer)

To Gregory Heyworth’s naked eye, the coat of arms was nothing more than a smudge. The emblem appeared on the bottom of the epic 14th-century French poem Les Eschez d’Amours; if it could be read, it would reveal to the medieval scholar which family had originally owned it. A firebombing in Dresden during World War II had marred its inscriptions, turning its provenance into a mystery.

“It looked,” he tells mental_floss, “like pigeon poop.”

Heyworth, an associate professor of English at the University of Mississippi, hoped that ultraviolet light might reveal more than what his eye could see. In 2005, he started examining the document with it—but unfortunately, the view didn't improve. So after years of frustrating work, he jumped online and dug up details of the Archimedes Palimpsest, a bundle of 10th century documents that had been erased by a monk so its parchment paper could be reused to write prayers. Imaging scientists had been successful in excavating the “lost” text from the Palimpsest. He wondered if they could do the same for the poem.

In 2010, Heyworth met with Roger L. Easton, Jr., chair of the Rochester Institute of Technology (RIT)'s Chester F. Carlson Center for Imaging Science. Easton had been working on new ways to image and decipher decaying manuscripts since the 1990s. At that point, X-rays (which can identify the iron in certain inks) and ultraviolet light had been in use for decades, but their reach was limited. There are hundreds of pigments, all of them responsive to different wavelengths. To properly exhaust most possibilities, there needed to be more options.The result of Easton's work was an arsenal of multispectral imaging hardware and software—photographic and analytical techniques that could take faded or erased text and, by reflecting different bands of light, make them visible to the eye for the first time in centuries. A very deliberate, sometimes exhausting practice, multispectral imaging is reviving vanished text and helping historians rewrite world history—a revolutionary new field blending science with the humanities.Using Easton's equipment, the two photographed Les Eschez d’Amours across a dozen wavelengths, each harboring the possibility of lighting up the pigments on the document. The images were loaded into processing software to further sharpen, enhance, and contrast. And there, viewable for the first time in hundreds of years, was the coat of arms: a unicorn and shield. Within two hours, Heyworth discovered that it was the von Waldenfel family of Bavaria, Germany, that had possession of the document prior to its known whereabouts in the 17th century. It was one missing piece of the poem's chain of ownership.

Les Eschez d'Amours is just one of many documents that can benefit from this process, potentially revealing more than we've ever known about civilization. The downside? There's currently a serious deficit of trained specialists, equipment, and money. "We have a minimum 60,000 manuscripts in Europe alone to image,” Heyworth says, noting that he has the only traveling multispectral system available. “It is, to me, a state of urgency. There is a real danger of some being lost forever.”

 

A page of the Archimedes Palimpsest, both visible to the eye (L) and after being processed as a multispectral image to reveal "overwritten," hidden text (R). (Image Credit: ArchimedesPalimpsest.org)

Though it's been refined significantly in the past decade, multispectral imaging isn't an entirely new development. In 1996, Easton and colleague Keith Knox had successfullyenhanced faded text from the Dead Sea Scrolls using filtered lenses on a Kodak camera, a process originally developed by the late archeologist Robert Johnston. Easton’s eureka moment came as the team removed two colors of the RGB (red, green, blue) model present in the visible spectrum from the digital image.

“We subtracted pairs of these bands,” he says. “In one of the subtractions, we were able to see some poor-quality, fuzzy characters. I suggested we compare those to the original color image. Upon doing so, we realized that we had not noticed those characters in the original. These characters were new.”

The handwriting had become visible. Later, Easton would introduce multiple wavelengths ranging from ultraviolet to infrared, capturing images as they reacted to a dozen different bands of light.  

“One way to think of it is like the black light you see on crime shows,” says Kevin Sacca, a senior undergraduate student who works with Easton analyzing images at RIT. “The pigment has different spectral properties that can absorb, reflect, or transmit light depending on the wavelength.” Hitting the right combination of light and pigment is like having the tumbler in a lock click into place: It can make invisible text glow with new legibility.   

When the Archimedes Palimpsest was rediscovered in the late 1990s, Easton saw an opportunity to put his techniques to a considerable test. Archimedes was a mathematicianborn in 287 BCE who had his elaborate formulas copied on dried animal skin known as parchment. In the 13th century, a monk had used an abrasive liquid—likely orange juice—to scrape off the ink describing Archimedes’ work. (At the time, parchment was difficult to find and often reused.) This recycling is known as palimpsesting. In this case, the monk took seven of Archimedes’ scrubbed manuscripts, tied them together, and used them as a canvas for his own writing.

 

(Image Credit: ArchimedesPalimpsest.org)

“Archie,” as the book is known to scholars, started out in rough shape and spent the next 700 years getting worse. Mold, age, and some ill-advised glue had all conspired to create a book that looked to be on the verge of crumbling. Imaging would not only provide a possible key to unlock the text, but a way of preserving it for future researchers to examine.

Though it had been photographed before Easton’s digital excavation in the 2000s, the scientist used multiple bands of light to create the best opportunity for the “undertext,” or the remains of the erased pigment, to be seen. A cell phone camera, for example, might take a picture in the three RGB bands visible to the eye; Easton photographed in a dozen bands, then blended the layers to form multispectral images. From there, the files would be examined in a software program called ENVI that can work to bring out faded or obscured writing by utilizing the different wavelength-specific bands used during photography and manipulating pixels for contrast.  

“The chances are, the ink written over it is different from the ink below,” Sacca says. “The spectral properties will be different, and we can separate them.”

The initial approach was to blend the “overtext,” or the monk’s writing, together with the parchment to isolate the undertext. But it was too blurry—and if the overtext was written directly over the faded ink, it would all disappear. Instead, Easton essentially turned the pages into three distinct layers, “lifting” the undertext off, using ENVI to sharpen and darken the text for visibility, and sending the results to scholars. Figuring out which wavelength the pigment responds to can take days. Since ink and damage can vary even on the same page, the process has to be repeated constantly; ENVI can take hours to run a single software process on an image, whether it's a whole page or just a portion.

 

A page of the monk's work in normal light (L), imaged (M), and with the undertext made visible (R). The hidden text was written vertically on the page. (Image Credit: RIT/Center for Imaging Science)

The results, however, were nothing short of stunning. Archimedes, it turns out, was on his way to discovering calculus and was pondering the concept of infinity well over a thousand years before scholars believed anyone had. The discoveries that trickled out beginning in 2000 essentially rewrote what historians had believed about math.

After much of the Archimedes work had been completed—some passages that had been painted over and resisted all attempts under multispectral responded to a Stanford X-ray examination—Easton began helping Heyworth with his studies in 2010. Heyworth’s model for a portable imaging system, a key part of what he dubbed the Lazarus Project, would bring Easton’s abilities to a wider audience. They’d also entertain proposals from scholars eager to unlock the hidden knowledge of their own work. A request to examine some charred pageswritten by William Faulkner revealed never-before-seen poetry; the Library of Congress employed similar techniques to discover that Thomas Jefferson had erased “subjects” and written “citizens” in the Declaration of Independence.

While manuscripts were a foremost consideration, one historian was intrigued by a map likely used by Christopher Columbus that was slowly being lost to time. Easton had performed his document archaeology for manuscripts. Could he do the same for a massive canvas rendered in multiple kinds of paint?

 

A segment of the Martellus map before processing, viewed under an (unsuccessful) wavelength, and finally showing the faded text. (Image Credit: courtesy of Chet Van Duzer)

The Martellus map warned of monsters. Four feet high by 6 feet long, the geographical guide was crafted by cartographer Henricus Martellus in 1491. Scholars believe it almost certainly informed Christopher Columbus about the shape of Asia and the (erroneous) location of Japan before he set about discovering the New World. It had fascinated scholar Chet Van Duzer ever since he had first seen images of the map taken under ultraviolet in the 1960s. The light had illuminated spores of ink.

“It proved there was text on the map,” he says. “But you couldn’t see most of it.”

Van Duzer reached out to Heyworth and Easton in 2012, who were collaborating to steer the Lazarus Project into new directions. Heyworth knew that many universities didn’t have the finances to install expensive imaging rooms with just a handful of historical documents, making his portable equipment (which was provided free of charge) attractive. 

The three would eventually sit on the Lazarus Project's board; for now, Van Duzer was explaining how badly he wanted to resurrect Martellus’ old legends.

In August 2014, team members traveled to Yale University, where the map is kept in the school’s library behind a protective enclosure. Their in-house archivists freed it from the wall and balanced it on an easel. (The map had been backed to help preserve it.) Easton used aquartz lens made by MegaVision to take 50-megapixel images of overlapping sections—55 in all—while an LED light source loomed over the canvas. Because the map’s surface is uneven and painted, varying the distance to the stationary lens, Easton had to refocus the camera as they made their way across. 

That fall, Easton and Sacca worked in Rochester to pull the faded text from the map, sending digital files to Van Duzer in California to translate Martellus’ Latin. Sometimes words would trail off, leaving him to infer meaning; other times, he’d squint and try to decide whether he was seeing a “V” or “LI.”

 

(Image Credit: Chet Van Duzer)

Like a developing negative in a dark room, the words of Martellus slowly appeared. He warned of sea dangers, and how some cultures fished for sharks. "A sea monster that is like the sun when it shines,” he wrote of the orca, “whose form can hardly be described, except that its skin is soft and its body huge."

Text in specific regions told Van Duzer which sources Martellus had used. Citing the work of Marco Polo, for example, came from one of the early manuscripts and not a published edition. (Details can vary between the two.)

“We know almost nothing about Martellus,” Van Duzer says, “so whenever we can generate or verify his sources, it’s exciting.” Martellus was himself a source for later mapmakers like Martin Waldseemuller, the first cartographer to name America. Knowing how Martellus crafted his topography would increase our understanding of how other important maps were created.

Because of Van Duzer’s knowledge of the map, he was able to request Easton and Sacca focus on specific areas. “He’d email and say, ‘Can you check there? I think there’s text but I can’t see it,’” Sacca says. “I spent four or five days running data on that one area. Sometimes you get single words, sometimes entire paragraphs.”

The Martellus map, Sacca says, is mostly imaged, with roughly 90 percent of the faded text now visible. Other technicians could go over it and possibly find data he’s missed, but that requires time and resources RIT doesn’t have. Despite pleas from many scholars and universities to examine their holdings, Easton only has two students working full-time to unravel documents.

“People will ask me to image their grandfather’s diary,” Sacca says. They don't realize the thousands of documents already in the queue, or that there’s only so much expertise to go around.

 

An overwritten illustration of a 5th century medicinal herb becomes wholly visible after being imaged. (Image Credit: SinaiPalimpsests.org)

At any given time, Easton, Heyworth, and other advocates for the burgeoning field oftextual science are traveling the world. Part of their mission is to image delicate relics that their owners wouldn’t dare think of transporting. (RIT is currently assisting in imaging the library at St. Catherine’s Monastery, home to thousands of ancient folios written in 11 languages and left behind by visiting monks as far back as the 4th century.) Another is to train students and other scholars how to use the technology so more manuscripts can be preserved and better understood.

“These students are the ones who will be doing the real work that will follow up on our efforts,” Easton says. “It is only by collaborations by people whose loyalties are to the objects and not to personal recognition or financial gain can the need be addressed.”

The rising tide of skilled image specialists face a danger beyond decaying pages: In 2012, Islamist extremists attacked one of the famed libraries of Timbuktu and burned its books. Fortunately, scholars had switched out their rare manuscripts, preserving the African writings, which date from the 10th century to 14th century.

“It’s the only record of scholarship of the continent from that period,” Heyworth says. “They’re endangered objects.” 

The more work that can be done, the more documents can be excavated, making interest in the field as much of a priority as imaging itself. Heyworth recalls a day not long ago when he invited a first-year student to sit down and interact with the ENVI software. A page from an ancient Vatican manuscript was onscreen. With a few mouse strokes, the text revealed underwriting. The student began to read the Greek out loud. 

"It was the first time anyone had heard that in over a thousand years," Heyworth says. "That moment made him a scholar. I want other people to have that experience.”

September 29, 2015 - 11:00am

 
Read More Read Full Story »
Original Source: mentalfloss.com

Pages