Imaging Science Undergraduates Tackle Ambitious Summer Research Projects
Student Stories
Color Science

Aug. 9, 2011
Amy Mednick

On the exterior it seems Brick City is sweltering and sleepy this summer, but expectations are high and real-life research is steaming along for two undergraduates in Professor Jinwei Gu’s color science labs. Students Kevin Dickey (below left) and George Huaijin Chen are steeped in the scientific method as they tackle research projects that they will present at the 20th Annual Summer Undergraduate Research & Innovation Symposium on August 12th.  







Sophomore Kevin Dickey has set an ambitious summer goal of creating an inexpensive, hand-held material classifier, or “gloss meter,” initially hoping to use LEDs (light-emitting diodes) as sensors. In his research, the sophomore from Peoria, Illinois has taken on the life of an imaging scientist and truly embraced the scientific method. Dickey has researched, ordered, and tested LEDs, graphed their performance, and written up pages and pages of data and results concerning the ins and outs of using the devices as sensors. (You can follow Dickey’s progress at

Dickey is building an inexpensive version of a device normally costing around $5,000 that will classify the surface gloss of, for example, a countertop or a wall. Dickey envisions a hemispherical device armed with LEDs to sense the object and then transmit the information to a software program that will produce a graph describing the material. He has tried white LEDs, red LEDs, expensive and inexpensive models. His original purchase of several low quality LEDs at Radio Shack actually yielded good results, but two identical LEDs could not sense each other’s specific wavelength of light, a critical criterion for Dickey’s instrument. In other words, the LEDs worked perfectly for the average consumer, but not for an undergraduate researcher.

In the process, however, Dickey has learned the basics of circuitry and refined his knowledge of coding, and he is communicating his progress on a daily basis. Most recently, Dickey realized that because modern LEDs are now used so commonly in all kinds of lighting , there is no need for them to function well as sensors. Instead, Dickey says, he has decided to turn to phototransistors, which are inexpensive, fast, and similar in size to LEDs. “The physical dimensions are especially important because a sensor that is round and shaped like an LED will allow for easier mounting within the final gloss measurement device,” Dickey says. “I’m currently testing a new set of phototransistors as we speak, expecting some good results. They are, after all, designed to sense light!” There is hope, after all, for Dickey’s inexpensive material classifier.

Chen—a double major in Management Information Systems and Imaging Science from Shenzen, China—received  $3,000 in support from the Summer Honors Program to design a system that solves the problem of false exposure in digital cameras. This adaptive, programmable camera system allows Chen to control the shutter of the camera at the level of an individual pixel with the goal of producing more detailed images and, eventually, improved color. Most conventional digital cameras with a single aperture have limited dynamic range, which makes it difficult to preserve the same details in the bright and dark areas of a potential shot. In order to capture high dynamic range (HDR) images, current technology forces photographers to shoot multiple images of the same subject. And, if the subject is moving, this method doesn’t even work. To explore new methods, Chen is using an LCD monitor without a backlight to control the transparency of each pixel. Chen has used the program MATLAB to create a code in which each pixel has a unique exposure. Chen’s software program will give him the ability to increase the amount of light that is hitting an underexposed area on the sensor, while blocking light on an overexposed area, thereby preserving details in both bright and darks areas of the image. His system is now a working prototype, complete with a platform for the LCD modulator built from LEGO bricks.

“The future goal of this system is to enhance the color range of the camera,” Chen says. He plans to continue this work as his senior project. Will we see this technology at Best Buy in the next five years? “It's hard to say,” Chen says. “It usually takes years for new technologies to go from lab to market. We will try our best."

Read More

CIS Undergraduate Sleuths Origins of Historic Documents at Library of Congress
Student Stories
Cultural Artifact and Document Imaging

Nov. 16, 2012
Amy Mednick

Most undergraduates do not get to experience a summer working alongside Library of Congress preservation experts and curators in preserving 500-year-old documents. Chester F. Carlson Center for Imaging Science junior Maggie Castle got that opportunity. For nine weeks last summer, Castle worked on a diary from the mid-15th century and a 1513 Ptolemy atlas that few people ever see, let alone examine in great detail.

During Castle’s Freshman Imaging Project, the students created a polynomial texture mapping device, which allows imaging scientists to study the texture of an old document.  Dr. Fenella France, chief of the Preservation Research and Testing Division at the Library, was invited to speak to the class and Castle became intrigued by her work. Later, she visited France’s lab during a vacation to Washington, D.C.

Inspired by her visit, Castle applied for and received an internship in the Preservation and Testing Division at the Library of Congress in Washington, D.C. to work on three separate projects using spectral imaging at ultra violet, visible, and near-infrared wavelengths. CIS Professor Roger Easton agreed to fund the internship last summer.

“Maggie's interest was fortuitously timed, as I had spent the summer of 2011 at the Library helping to develop some of the techniques used to process the imagery,” Easton said. “The value of such an opportunity to an undergraduate student is incalculable, and she will find that the techniques she utilized are applicable in a wide range of disciplines, including medicine and environmental remote sensing."

Initially, Castle delved into assisting experts in figuring out the origins of the nautical diary of 15th century German mathematician and astronomer Johannes Müller von Königsberg (1436-1476), known as Regiomontanus. The diary consisted of a collection of astronomical calculations and sketches that paved the way for the transition from the Julian calendar to the Gregorian calendar, which we presently use, in 1582. Castle used spectral imaging to extract watermarks in an effort to determine where and when it was printed. She found four watermarks and “hidden text” on six of the 15 imaged pages.

“The challenge was there was a lot of guess and check work,” Castle says. “After using the software, you had to experiment with different bands to try to get the watermark to pop out and visually discern it from the background.”

For her second project, part of an effort to preserve the diary and other documents from the same time period, Castle was charged with investigating the reactivity of iron gall ink, also using spectral imaging. This would help preservation scientists select a method to assess treatments for stabilizing ink on historic documents. Iron gall ink, made from iron salts and tannic acids, was common during this time period up to the 20th century. Iron (II) sulfate heptahydrate, contained in the ink, is corrosive to paper. Castle was able to figure out, using a spot test, the percentage of reactive Iron(II) in test prints to create plots depicting the change in this percentage over time for various preservation methods.

Finally, Castle had the extraordinary experience of working with a 1513 edition of the Ptolemy Atlas, one of three copies of this rare book published by Johannes Schott in Strasbourg. The goal was to figure out which pigments had been used in hand-coloring the map. Once again, spectral imaging allowed Castle to examine the document non-invasively and to separate the image set into a set of spectra that can help determine the mixture of pigments at point (pixel) on the image. She then compared these spectral curves and compared them to existing pigment samples. In the final weeks of the internship, Castle discovered that fustic, a yellow, might have been used.

”Maggie Castle showed great enthusiasm for her work in the Preservation Research and Testing Division, and a true appreciation for the uniqueness and importance of these rare collection items at the Library,” Dr. France said. “Many people ask what is the most challenging part of what we do, and I often answer, that there is no room for mistakes; objects we are working with are often the only copy remaining in the world. Maggie’s background in imaging science provided an excellent grounding for the work we do here at the Library, and we were delighted to have her as part of our preservation team over summer.”

While Buffalo native Castle wouldn’t mind returning to Washington D.C., where her sister lives, she needs to buckle down and work on her senior project next summer. 

Read More

Keeping the Spirit of Innovation Alive
Student Stories
Independent Research

Sophomores turn enthusiasm for research into year-long extracurricular project funded by CIS Microgrants Program

Apr. 22, 2013
Amy Mednick

Squeezing in time between classes and convening late at night in a lab at the Chester F. Carlson Center for Imaging Science (CIS), a group of sophomores is harnessing their powers of innovation, creativity, and independence to design and build a volumetric display system in time for Imagine RIT. These six budding scientists got the bug to “do” science during their­ Freshman Imaging Project class and resolved to extend the research and their collaboration into their sophomore year. The team—in cooperation with six software engineering students—will present a working prototype of their volumetric display of three-dimensional data at this year’s festival on May 4.

Entering the lab inhabited by the student-led team, the creative energy is palpable. Laptops and papers tile the large, round table, the whiteboard is filled with calculations, and a “12  days” countdown to Imagine RIT is posted in the corner of the board. Equipment abounds and a tall cart houses the volumetric display designed to project an image that is truly three dimensional.  When the students begin to talk, they obviously know each other well, respecting others’ voices even as they finish each other’s sentences and piggy-back on ideas. “We work really well as a group together and I think this is why we did this,” says Brooke Saffren, of Doylestown, PA, who is a biomedical science major and imaging science minor.

 “We all share the same direction,” adds Doug Scott Peck, an imaging science major, from Syracuse. “Ultimately, we all have the same goal and respect each other’s opinion. That mentality was formed in the freshman imaging project.”

During the yearlong freshman project, students are challenged to work collaboratively, in a student-centered, lab-based environment, to research, design, and build a functional imaging system in time to exhibit at Imagine RIT. At key points during the year, the team presents their plans and progress to a group of faculty evaluators from across campus and at the end of the year the students unveil the finished system at Imagine RIT. The project, which invariably creates a strong bond between the students, replicates the professional interactions and assignments that they might face in future careers.

“You can be super smart in academia, but if you can’t work with a group of people and take constructive criticism and give constructive criticism, then you can’t apply that knowledge in a coherent way,” says Cicely DiPaulo, an imaging science student from Pittsford, NY.

Last year, Freshman Imaging Project coordinators, CIS Associate Director Joe Pow and Dr. Maria Helguera, professor of imaging science, tasked students with responding to a need for an imaging system that would allow physicians to assess whether individual patients would respond well to intubation. Intubation involves inserting a ventilation tube into the patient’s mouth and trachea during general anesthesia. “We had to build a system that would attempt to eliminate physician error.  Before, whether or not someone could be intubated was done by doctor’s determination,” says Megan Iafrati, an imaging science student, of Greece, NY.

University of Rochester physician Dr. Jacek Wojtczak and postdoctoral researcher Dr. Bo Hu asked the class to create an imaging system that could use quantitative measurements of a person’s facial features to assess a patient’s susceptibility to intubation. The team of students developed a system that would project black and white striped patterns of different widths onto a patient’s face. They then developed software that would reconstruct a three-dimensional image—what the students described as a “point cloud”— from the observed deformation of the patterns. The point cloud could then be used to generate a lifelike 3D image of the subject.

“At Imagine RIT last year, I spoke with a woman who couldn’t be intubated. She had a really bad experience, so she was excited that we were doing this project,” Iafrati says.

“Our favorite thing about this project was that as freshman coming right out of high school, we were given the responsibility to do a real project helping physicians with something that they actually need,” DiPaulo says.

At the time, DiPaulo felt that she did not want the experience to end, and she decided to do something about it.

DiPaulo approached some of her fellow students about the idea of continuing the experience in their sophomore year. Saffren, Iafrati, Peck, imaging science student Rose Rustowiscz, and Sean Cooper, who is a Motion Picture Sciences major, all expressed interest in the project. Over the summer, the students attempted to set up the project as a class, which proved too complicated. At the last minute, the team applied for and received a $3,800 CIS microgrant to fund supplies. By November, CIS had provided a lab space and the project was underway. Later in the year, a group of software engineering students joined the team.

Rustowicz, from Cheektowaga, NY, says they were able to succeed with the freshman project even though they had little experience with research and development because they were not afraid to ask questions and seek guidance from faculty, staff and students. “We knew what we didn’t know,” she says.

The sophomores this year say they had a better sense of how to organize the project, including drawing up a schedule with specific milestones. Each week they meet for an hour and hold a two-hour workshop in addition to their independent work on the project.

“The team has demonstrated fantastic organization, their goals are quite clear and they have managed to stay on schedule,” Professor Helguera says. “It is incredibly motivating, as an instructor, to walk in that room and watch them work, discuss, and above all, enjoy themselves.”

After a year of effort and input from their engineering teammates, they now have a functioning system. In the students’ words, the system is “composed of a projector that displays 96 unique images of the object being displayed onto a mirror set to spin at a certain number of rotations per second. The synchronization between these two factors is what allows the display to be proportionally correct as well as being able to be seen from different viewpoints.”

The students are planning to give a presentation about their volumetric display at the Hawaii University International Education and Technology Conference this summer.

“When we started this, we weren’t completely lost like we were last year. I can’t put to words how helpful [the freshman imaging project was for us]. If you know generally how to attack a problem, then there is no reason it can’t be solved,” Cooper says.

Read More

CIS Student Picked as John Wiley Jones Scholar
Student Stories
Remote Sensing

Imaging Science student Chris Lapsznyski recognized for outstanding senior project research

Jun. 24, 2013
Amy Mednick

Chris Lapsznyski says his professors’ enthusiasm for tackling difficult problems is contagious. That’s why he has devoted countless hours to developing sophisticated mathematical algorithms to pull out important features from hyperspectral remote sensing imagery. This dedication has not gone unnoticed. The College of Science recognized Lapszynki as one of the John Wiley Jones Scholars this spring for outstanding senior project research with Professor David Messinger.

Traditionally, researchers in the field of remote sensing have mainly taken advantage of color differences when trying to classify objects in images. For his senior project, Lapszynski figured out mathematical algorithms that could add spatial information to tasks such as anomaly detection and image classification. “The algorithms and some of the codes handle hyperspectral imagery on the order of hundreds of bands,” he says.  “The highest I’ve used is 231 bands.”

Lapszynski has used graph theory to analyze spectral imagesin a way that integrates the spatial and spectral information. “The graph theory approach allows the data to speak for itself, while in traditional methods you were interpreting the data without having prior knowledge of what it might be,” he says. Still, the graduating senior says he is not yet sure how best to construct these graphs. “We have different methods, but we don’t know which one is the best. It depends on the application. The math side has been around for hundreds of years, but applying it to this type of data is a recent development.”

After critical time spent working on the theoretical problem, Lapszynskiapplied the theoretical work to actual imagery collected with the airborne HyMAP sensor.  In one image tile of a scene in high resolution, for example, a river that ran alongside the road popped into view more clearly with the new techniques. “We’re not sure why. One guess is that the river is more anomalous than the road. (The spatial imagery) might have considered the road as background because there was a lot of upturned gravel and dirt in the scene,” he explains.  With the new technique, Lapszynki could better distinguish, for example, between manmade and natural materials. These techniques may eventually be useful for researchers studying deforestation in the Amazon, in the mining industry, or for farmers interesting in analyzing different types of soil.

The John Wiley Jones Award for Outstanding Students in Science is given to students in each of the six departments in the College of Science in recognition of their academic achievements and their contributions to the entire campus as good citizens.  Lapszynski, who recently presented his senior project research, says he was surprised to be nominated to receive the award.  “It was an honor to receive the award knowing that the faculty and staff chose me to be a recipient of the scholarship, especially since other individuals in my class have dedicated just as much time and effort into their education,” he says.

But the Director of the Chester F. Carlson Center for Imaging Science, Stefi Baum, said that Lapszynski was a very deserving choice. In addition to his outstanding research activities, Lapszynski was a very active RIT citizen. During his college career Lapszynski has not shied away from outreach activities. He devoted himself this year to helping the freshman imaging project students in their efforts to calibrate their camera system and in answering any of their questions. As president of the Imaging Science & Technology Society for the past two years, Lapszynski organized weekly colloquia for the student body from industry representatives, CIS staff and even students working on cutting edge technologies related to the field. “Topics ranged from remote sensing, to astronomical, biomedical, visual perception, art preservation/historical manuscripts, digital image processing, and much more.”

Lapszynski, who is from Philadelphia, will graduate and move to Dayton, Ohio to work for CACI, a defense contractor, doing work similar to his senior project.

Read More

Undergraduate Takes Full Advantage of Unique Opportunities at Chester F. Carlson Center for Imaging Science
Cultural Artifact and Document Imaging
Student Stories

Carrie Houston, a third-year undergraduate, is enjoying exploring all of the opportunities afforded to her at the Chester F. Carlson Center for Imaging Science at RIT.  

Feb. 18, 2011
Rachel Pelz

An honors student with a minor in Math, Carrie is currently doing research with Roger Easton, a faculty member at the Center. "There's a lot of history involved with our project," she says. "We're doing image processing on pages of a journal of David Livingstone's, trying to recover the handwritten text so scholars can read it."

Carrie also recently completed a five-week study abroad program in Australia and New Zealand. "It was field studies," she says about her time there, "we went camping and kayaking and climbing mountains. It was a really interesting and amazing experience."

As a high school student looking for undergraduate programs, Carrie's photography teacher recommended the Photo Tech program at RIT. "I always liked the technological side of photography," says Carrie, "so I started to look [at RIT's programs] and I found Imaging Science." As she was researching, she discovered that her uncle received his Master's from CIS and he encouraged her to apply. She was excited to find a program that "has so many kinds of sciences involved, so many disciplines. I liked chemistry, biology, math. I knew I would get a good background."

During the application process, Carrie came to visit CIS at an open house they held for prospective students. "I got one-on-one attention from everyone here," remembers Carrie. "One of the students came and talked to me and Maria Helguera brought me to her lab. I didn't get that experience at any other school I visited." She says she eventually chose CIS because of "the uniqueness of the program, the individualized attention, and seeing how close everyone is."

And why is she glad she chose the Imaging Science program at RIT?

"You can't get this program anywhere else," she says. "Not even close!"

For more information on the Livingstone project, please see:

Undergraduate student builds tabletop Schlieren System with help from CIS Microgrants Program
Student Stories

Air is defined as "the invisible gaseous substance surrounding the earth..." What if you could picture the invisible? It is possible with a Schlieren Imaging System.

Mar. 21, 2014
Lisa Powell

Taking inspiration from a 2012 lecture on the subject given by Professor Gary Settles, who was visiting RIT from Pennsylvania State University, Chester F. Carlson Center for Imaging Science student Dan Goldberg decided to create a portable Schlieren System.

"I thought it was really cool, so at the next meeting of the SPIE Student Chapter at RIT I suggested we make one of these things that would be cool to look at and small enough to take to a classroom."

Schlieren is the German word for "streaks." When layers of air or gas differ in density from one another they become visible as transparent streaks or waves. A Schlieren System allows us to view this phenomenon.

When a ray of light hits something that has a different density than the air around it, the light will bend. This is called refraction. Think of the shimmering mirage rising up from an asphalt road on a hot day.  What looks like a pool of water in the distance is not what it appears to be, yet it is very real. The rays of light from the sky are being bent as they pass through the hot air rising from the ground.

Goldberg's Schlieren System uses a knife edge, a spherical mirror, and a light source to show such variations in atmospheric density. Adding the knife-edge to the System refines it "so you can see someone's breath or the heat coming off of someone's hand."

Because he was so inspired by the subject, Goldberg wanted to bring the concept to a wider audience, so, using a microgrant from the Carlson Center for Imaging Science, Goldberg designed a portable, 5-foot, single-mirror Schlieren System. Goldberg's faculty sponsor for the project was Dr. Dale Ewbank, who teaches microelectronic engineering at RIT.

Two of Goldberg's fellow students went to the SPIE annual conference in San Diego during the summer of 2013. At the meeting, they exhibited the compact Schlieren System; several people inquired as to how they could make such a system and show it to others. The System was also displayed at last year's Imagine RIT, and is expected to make an encore appearance at this year's event.

"The science behind this whole technique is old and has been known for a while; you don't need a high level of physics to understand it. That means it can be explained to high school students," Goldberg explains. He adds that Robert Hooke started experimenting with these systems soon after he discovered the schlieren phenomenon in the 17th century. At that time it was used to find imperfections in lenses and mirrors and that remains one of its uses today.

The system can be applied in medicine to observe how the breath produced by a cough moves through the air, or in fire science to observe the way heat comes off of burning leaves or pine cones, or simply to observe a gas leak in an enclosed space.

"It is an analog technique," explains Goldberg: an experiment performed "sort of the old-fashioned way."

After he graduates from RIT this year, Dan Goldberg plans to apply to graduate school, but his main focus is on finding a job to help him get through more school, perhaps working in computer science.

Read More

Women's crew enjoys best showing in program history at 50th Head of the Charles Regatta

Imaging Science undergraduate junior Lindsey Schwartz part of record-breaking team

Oct. 21, 2014


Click here for results

BOSTON, MA – RIT women's crew matched windy conditions on the Charles River at the 50th Annual Head of the Charles Regatta on October 18-19 with their own strong will, finishing seventh overall in the Women's Collegiate Eight event, their best finish in program history.

The Tigers crossed the start line at bow number 26, passed several crews, and raced to a top ten finish and the first crew to represent New York State. Bates College finished first in a time of 17:25.60, followed by Trinity, Wellesley, Grand Valley, Washington College, Barry, RIT , Williams, Middlebury, and Ithaca. Rounding out the New York schools, William Smith finished 12th, West Point 18th, Rochester 19th, and St. Lawrence 25th. RIT finished in a time of 17:57.59. Representing the Tigers racing in the Happy Day, from bow to stern sat Katie Baldwin (Phelps, NY/Midlakes), Lindsey Schwartz (Rochester, NY/Gates-Chili)Taylor Blackwell (Pittsford, NY/Pittsford Sutherland), Erin Coppola (Rochester, NY/Our Lady of Mercy), Sarah Foggett (Webster, NY/Webster Schroeder), Brittany Dzugas-Smith (West Babylon, NY/Landmark), Laura Alderfer (Sellersville, PA/Pennridge ), Arielle Weinstein (Athens, NY/Coxsackie-Athens), and coxswain, Erin Loughran (Newburgh, NY/Newburgh Free Academy).

Women's Varsity Coach, Cassidy Goepel commented after the race, "I'm so proud of these girls. The day before we had a terrible Charles practice row. The girls were frazzled with all the crews on the water, the stopping and starting, and near misses. But I told them the race would not be like that. Once they were on the course they would have the opportunity to let the shell run out and let it fly. And they did! As soon as they landed on the dock and I saw all their smiling faces, I knew and they knew that they had raced a really solid piece. All of the girls did well. I'm just as proud of the oarswomen in the double and the four. They raced on Saturday with just as much heart and really created a nice spirit and a lot of momentum going into Sunday."
Representing RIT for the first time in the Women's Championship Doubles event were Phoebe Hurd (Raymond, ME/Windham) and Chelsea Coates (Sanborn/Niagara Wheatfield). These first time scullers took on the challenge with aplomb against some very good crews. Undaunted, the Tigers met their goal to do their best and steer a good course on the winding Charles River. They finished in a time of 22:20.84 and in 22nd place.
In a borrowed shell from the University of Rochester, and with only a couple of practice rows under their oars, the Tiger four finished 28th out of 36 crews in the Women's Collegiate Fours event in a time of 20:54.99. Seated from bow to stern sat coxswain Sarah White (Bay Village, OH/Bay), Jillian Bastidas (Bethlehem, PA/Notre Dame ), Hayley Bartkus(Philadelphia, PA/Central), Kalila Elahi (Rochester, NY/West Irondequoit ), and stroke, Christina DiSalvo (Derry, NH/Pinkerton Academy).
The Tigers end their fall training season this weekend at the Head of the Fish Regatta in Saratoga Springs, N.Y.

Read More Read Full Story »
Original Source: RIT Athletics

Columbus Sailed Here! Multi-Spectral Imaging of an Important 15th Century World Map
Cultural Artifact and Document Imaging

CIS professor Dr. Roger Easton featured in story about multi-spectral imaging the Martellus Map

Oct. 7, 2014
Mary Downs

Roger Easton checks the positioning of the map for the next shot

Roger Easton checks the positioning of the map for the next shot; Gregory Heyworth operates the computer that controls the camera; and Michael Phelps monitors the process.

Photo by Chet Van Duzer.   |   Click here to view full image gallery


In August 2014, an interdisciplinary team of imaging scientists and scholars gathered at Yale University’s Beinecke Rare Book and Manuscript Library to undertake exciting work on a map that in all probability influenced Christopher Columbus’s conception of world geography.  Drawn by German cartographer, Henricus Martellus, who was working in Florence, Italy, in about 1491, the map shows the entire world as it was known at the time.

[Text shortened for length; use "Read Full Story" link below right to read more about what makes the Martellus Map remarkable and view a gallery of images.]

With funding from NEH’s Division of Preservation and Access, an interdisciplinary team of humanities scholars, digital specialists, and librarians is about to open a new window on the Martellus map through the use of multi-spectral imaging.  The imaging will render the text legible for detailed analysis, which will shed light on understanding of world geography and cartography at the time, as well as help scholars address specific research questions, such as whether Martin Waldseemüller drew on the spatial relationships and the place names of the Martellus map for his own 1507 map.


Multi-spectral imaging, a technique that has only been developed in the past decade, captures multiple images at specific frequencies of light, including ultraviolet and infrared, which are then combined to reveal information that is not visible to the human eye.  See the image gallery for an example of how multi-spectral imaging enhances the legibility of a darkened papyrus fragment, from a recent NEH-funded project at Brigham Young University.  This particular fragment, P. Tebt. 254, contains a petition to Asklepiades, overseer of the revenues, from the royal farmers of Kerkeosiris, ca. 113 BCE and was recovered from a crocodile mummy exhumed at the ancient site of Tebtunis,  Egypt in 1900 CE.  Compare the legibility of the fragment, photographed with standard photography (on the left) and with multi-spectral imaging (on the right).  It is especially valuable for recovering text that has been obscured by fading, water damage, over-painting, and palimpsesting.  Notably, the technique does not expose the already fragile map to destructive light rays. 

The Martellus map project team consists of Michael Phelps of the Early Manuscripts Electronic Library, an organization based in Los Angeles, California, that uses digital technologies to make manuscripts and other historical source materials accessible for study and appreciation; Gregory Heyworth, of the Lazarus Project at the University of Mississippi, which facilitates the recovery of manuscripts through multi-spectral imaging, and another member of the Lazarus Project, Roger Easton, Professor of Imaging Science at the Rochester Institute of Technology in Rochester NY; Kenneth Boydston, a digital imagery pioneer and CEO of MegaVision; and Chet Van Duzer, a specialist in the history of cartography at the Early Manuscripts Electronic Library, and the director of the project. 

Van Duzer and his colleagues transported a custom-designed multi-spectral imaging system (see images in gallery) from Oxford, Mississippi, to New Haven, where they are working closely with the curators and the digital technology team at the Beinecke Library.  They divided the Martellus map into 55 overlapping regions, or tiles, and took 22 images at varying wavelengths per tile.  When the project is completed next year, digital processing should reveal any previously illegible text and images on the map.  With metadata assigned to the images, information will be made available about the content and imaging conditions.  Images of the Martellus map and metadata will be made freely available to the public in early 2015 via the Beinecke Digital Library Web site.  National Geographic is also planning an article on the Martellus map with publication of the multi-spectral images.  Thanks to NEH funding, the public will shortly have access to a set of technical images of the map that will reveal knowledge about map making and geography at a critical moment of global exploration.

Support for this project was awarded through the Humanities Collections and Reference Resource grant program from NEH’s Division of Preservation and Access: PW-51707-14 to the Early Manuscripts Electronic Library, Los Angeles, CA. Support for the multi-spectral imaging of Egyptian papyrus fragments was awarded through the Humanities Collections and Reference Resource grant program from NEH’s Division of Preservation and Access: PW-50427-09 to Brigham Young University, Provo.

Read More Read Full Story »
Original Source: National Endowment for the Humanities

Revealing Secrets of a 15th Century Map: Beinecke Welcomes Multispectral Imaging Project
Cultural Artifact and Document Imaging

Oct. 20, 2014
David Brensilver


The Martellus map on an easel, which allowed the object to be repositioned for the camera. Image courtesy of Chet Van Duzer.

In 1962, thanks to an anonymous donation, the Beinecke Rare Book and Manuscript Library at Yale University acquired a 15th century world map created around 1491 by German cartographer Henricus Martellus. According to Michael Phelps, director of the Early Manuscripts Electronic Library in Rolling Hills Estates, California, the map – or a version of it created by Martellus – is likely one that Christopher Columbus consulted prior to embarking on the 1492 voyage that landed him on the shores of the New World. A map made in 1507 by another German cartographer, Martin Waldseemüller, makes use of the Martellus map, Phelps said, explaining that the latter represents “a real turning point in history.”

The problem with learning more from the Martellus map, until this point, had been that to the naked eye, Phelps said, “it’s indistinct.” Time has caused the map to fade. Phelps said that in the 15th century, rivers and cities on the map would have been in great contrast, in terms of the colors that were used to depict them, but that over time, those colors have become muted and (again) indistinct. Until now.

In August, a team of researchers led by independent scholar Chet Van Duzer spent 10 days at the Beinecke using a multispectral imaging process to bring out the history of the map. Mike Cummings, the Beinecke’s public-relations manager, said the library welcomed the multispectral imaging team. “We support all kinds of scholarship and we’re excited to see what they are able to produce,” Cummings said.

Van Duzer said he first began studying the Martellus map as a source for the 1507 Waldseemüller map that resides at the Library of Congress. The significance of the Waldseemüller map, Van Duzer said, is that it was the “first map to apply the name America to the New World.” Wanting to compare the two maps, Van Duzer first studied ultraviolet images that were taken of the Martellus map in the early 1960s – before the map was acquired by Yale University. In 2010, after staff at Yale the previous year made new ultraviolet, infrared, and natural-light images of the map, Van Duzer studied those images at the independently run John Carter Brown Library, on the campus of Brown University, in Providence, Rhode Island. Able to read about one-third of the map’s previously illegible text, Van Duzer wrote a book on the subject.

“It’s one of the most important maps of the 15th century,” Van Duzer said. “I’ve been sitting on the book for three years now,” he said, waiting for the results of the multispectral imaging process that was conducted at the Beinecke in August. He’s in the process of expanding on his book about the Martellus map. The technology for the Martellus map multispectral imaging project was made available by Gregory Heyworth, a professor in the English department at the University of Mississippi and the director of the not-for-profit Lazarus Project, which connects researchers with portable, high-end multispectral imaging equipment. The project itself was funded through a grant from the National Endowment for the Humanities. Whereas in 2010 he spent a week in Providence trying, with the 2009 images taken at Yale, to read a block of text in the lower-right corner of the Martellus map, Van Duzer said images captured in August have allowed him to read that same text “without any difficulty whatsoever.”

Still, he said, “the processing of the images is an art” that takes a while. At press time, only a handful of the images captured at Yale had been processed. Eagerly, Cummings said he and his colleagues at the Beinecke will “be able to put the images on our website, and we’re excited for that.” Phelps, in an email, explained the multispectral imaging process in detail.

“Multi-spectral imaging,” Phelps wrote, “involves capturing a set of images of a single object at different wavelengths or bands of light, in order to better discern information about the object. Colors of light, including those the human eye can see and those it cannot, can be arranged along a spectrum according to their wavelengths. On this spectrum, the human eye perceives a broad band of different colors or wavelengths of light. … Multi-spectral imaging [MSI] involves capturing individual images at specific wavelengths or narrow bands along this spectrum, in order to discern new information about an object.”

Roger Easton, Phelps wrote, a professor of imaging science at the Rochester Institute of Technology who, along with Phelps (and Heyworth), sits on the Lazarus Project’s Board of Directors, developed the technology, which “creates derivative images that combine data from the captured images.” The technology’s “application to cultural heritage is certainly new,” Phelps explained. A most important part of this kind of project, he pointed out, is the “feedback loop between scholar and scientist” – that is, in this case, between Van Duzer and Easton – through which the team works “to try to extract as much information as we can from the information we extracted from the map.”

In his above-mentioned email, Phelps explained that Easton “processes the captured images of the Martellus map in order to generate a series of derivative, processed images which maximize the legibility of text and other information on the map. Roger builds an ‘image cube,’ in a sense a stack of the captured images, and then uses statistical methods to analyze the collected data and to distinguish features of the map. Some of these features, such as faded writing, may be illegible to (the) naked eye, but can be isolated statistically and then rendered legible in processed images. A feedback loop between Roger Easton, project scientist, and Chet Van Duzer, project scientist, improves the processed result and insures that we maximize the legibility of faded and obscured text on the map.”

Heyworth pointed out that capturing the images is only 15 percent or 20 percent of the process. The majority of a multispectral imaging project involves the image processing and the task of reading and understanding what’s revealed.

“Multispectral imaging is an esoteric science,” Heyworth said, explaining that “we do textural science,” and that “the technology … is in its inception.”

The goal, he said, is “to reveal writing that is not visible … and also to create a highly color accurate … digital reproduction of the object,” a reproduction that reaches back in time. He likened the process to looking at stars. Through the multispectral imaging process, one “looks into the earliest history of the object,” he said. And through that technology, he said, “we’re changing the canon.”

The Martellus map multispectral imaging project at the Beinecke Rare Book and Manuscript Library was a collaboration between the Early Manuscripts Electronic Library, which oversaw the imaging process, and the Lazarus Project, which provided the equipment. The imaging team included independent scholar Chet Van Duzer, who led the project; Gregory Heyworth, a professor of medieval studies at the University of Mississippi and the director of the Lazarus project, who conducted the imaging; Michael Phelps, the director of the Early Manuscripts Electronic Library, who served as the project manager; Roger Easton, a professor of imaging science at the Rochester Institute of Technology and the imaging team’s project scientist; and Kenneth Boydston, CEO of the digital imaging company MegaVision, who designed the camera used in the imaging process and helped to capture images of the Martellus map.

Learn more about the Early Manuscripts Electronic Library at Learn more about the Lazarus Project at And visit the Beinecke Rare Book and Manuscript Library online at

This article appears in the October issue of The Arts Paper. Read other stories from this issue online here.

Read More Read Full Story »
Original Source: Arts Council of Greater New Haven

Science exploration program challenges students with Martian mystery
Astronomy and Space Science

athenaeum logo

Oct. 9, 2014
Susan Gawlowicz


A. Sue Weisler

First-year students in the RIT science exploration program are searching for life on Mars. The small group of undeclared students in the College of Science will analyze fragments from six Martian meteorites for clues to another world. Their research will lead them to sample different aspects of science and, perhaps, find a discipline to major in next year.

Program director Roger Dube didn’t hesitate to ask the incoming students to try to answer one of the biggest questions of the century.

“The project had to have a hands-on laboratory component, an opportunity to exercise the different disciplines in a balanced way, and sizzle. It had to have something to it that makes them excited,” said Dube, professor in the Chester F. Carlson Center for Imaging Science.

Dube obtained the six meteorite fragments, or carbonatious chondrites, from the Lunar and Planetary Institute. Each came with a chemical analysis and provenance, including date and location of its discovery. He is confident the shards derive from rocks ejected from Mars 10,000 to 100,000 years ago.

“When asteroids hit Mars, they kick up huge clouds of Martian dirt and big chunks of rock get flung into the solar system,” Dube said. “We’ve only been able to identify Martian meteorites confidently since we’ve had rovers on Mars. We were able to do a chemical analysis of what Martian soil looks like.”

The ratio of two isotopes of the element argon identifies a meteorite as “Martian,” he said. It’s an identifying signature.

“Since Mars lost its atmosphere early, heavier isotopes in the air are abundant and appear in the rocks,” Dube said. “The ratio of these two isotopes is markedly different in rocks on Earth and rocks on Mars. The early rovers confirmed this ratio, and it acts as a reliable marker.”

Meteorites also look different than rocks found on Earth.

“The surface of the meteorite gets melted as it travels through the Earth’s atmosphere and ends up with molten rock on the outside,” Dube said. “That’s the outer skin. Inside the rock is totally preserved.”

The science exploration program, in its third year, is a learning environment that requires students to brainstorm and problem-solve whatever idea Dube presents, whether it’s analyzing rocks from Mars or creating a backpack water-filtration system or a microbiological fuel cell, as in the previous years.

The students form teams and sub groups and set goals. They exercise project management, critical thinking and communication skills as they narrow their research and define different techniques to explore.

“I expect the students to be the leaders of the project,” Dube said. “I want them to take ownership of the whole thing. I’m going to be there to make sure they don’t fall off the tracks.”

This year’s group will take direction from existing research and techniques other scientists have used to look for biological activity on Mars. Their project will lead them to professors in the College of Science whose laboratories hold powerful instruments that could help them find traces of something recognizable in the rocks.

“Hopefully by Imagine RIT they will have done all the analysis and have identified regions and features that are candidates,” Dube said. “If they find a candidate, everyone will focus on that and everything we can to confirm our suspicions.”

Read More Read Full Story »
Original Source: University News