RIT Sponsored Research garners $52.7 million in funding

Portfolio up 12 percent; records for new awards, proposals and number of investigators

Nov. 10, 2014
Ellen Rosen

Rochester Institute of Technology’s sponsored research portfolio grew by 12 percent in fiscal year 2014, reaching $52.7 million in funding.

RIT received a record 410 new awards in the fiscal year 2014 from a variety of state, federal, corporate and foundation sponsors. Half the funding came from federal sources, with the National Science Foundation alone providing $11 million in funding, up from $7.4 million the previous year.

“This is an indicator of how RIT continues to mature as a research university,” said Ryne Raffaelle, RIT vice president of research and associate provost. “I am encouraged by how our research portfolio has evolved in new areas such as health-related technology and computing and information security as we continue to grow some of our traditional areas such as sustainability and imaging science.”

The success comes as RIT is on the verge of moving into the national research category as assigned by the Carnegie Foundation, which U.S. News & World Report uses to classify universities. National research classification is based on the number of Ph.D. degrees awarded. RIT had a record 29 graduates earn their doctorates this past spring. A doctoral program in engineering began this fall, becoming RIT’s seventh Ph.D. program and joining astrophysics, color science, computing and information sciences, microsystems engineering, imaging science and sustainability.

Read More Read Full Story »
Original Source: University News

JARS article by CIS Research Faculty one of the most downloaded in 2014
Remote Sensing

Article authored by Aaron Gerace and John Schott named by the Journal of Applied Remote Sensing as one of the most popular in 2014

Oct. 2, 2014

Journal of Applied Remote Sensing

Downloads of JARS articles also continue to rise, with articles published in 2013 having an average of more than 600 downloads since publication. The articles with the highest number of downloads in 2014 are listed below.

JNP is accessible to a large international user base via the SPIE Digital Library and is indexed in Web of Science/Science Citation Index Expanded (SCI-E), Scopus, Inspec, Current Contents, and other key scientific databases.

Most-downloaded JARS Articles in 2014:

Increased potential to monitor water quality in the near-shore environment with Landsat’s next-generation satellite: Aaron D. Gerace; John R. Schott; Robert Nevins


Read More Read Full Story »
Original Source: Journal of Applied Remote Sensing

Making Hidden fonts visible
Cultural Artifact and Document Imaging

News article in Austrian national daily newspaper der Standard about manuscript imaging in Vienna, with a processed image by Imaging Science BS graduate and current PhD student Dave Kelbe

Oct. 29, 2014
Kurt de Swaaf

The book pages are irradiated with light of different wavelengths.  Because parchment and ink varies strongly absorb this light, the hidden font will be exposed.At left: The book pages are irradiated with light of different wavelengths. Because parchment and ink varies strongly absorb this light, the hidden font will be exposed.

Photo: spectral imaging by the Early Manuscripts Electronic Library. Processed image by David Kelbe. © project fwf p24523-g19

*This article is translated from German. Please excuse any translation errors.*


Quasi invisible ancient writings, the store in the Austrian National Library, give thanks to modern technology reveal their secrets

Vienna - Konstantin Opel in the 16th century: Ogier de Busbecq is Imperial as an official envoy of His Highness Ferdinand the First stationed in the capital of the former Ottoman Empire. But the interest of the Flemish nobleman is not only his diplomatic mission. "He was an avid collector handwriting," said the philologist Jana Grusková.

The Bosporus metropolis provides for the bibliophile Ambassador is a very interesting hunting ground. Over the years, acquired de Busbecq more precious tomes, so books in the format of a half sheet. Including a bound collection of ecclesiastical decrees from the 10th century. Later, he bequeathed these works of the Viennese Court Library. The book mentioned above is cataloged sometime under the title "Codex Vindobonensis historicus gr. 73" and disappears on the shelves.

The Sleeping Beauty takes about 400 years. Then start several scientists, the holdings of the Austrian National Library to search systematically for so-called palimpsests.These are books and music from multi-described parchment.The writing material made ​​from tanned animal skin was expensive and was often used in the Middle Ages several times. But one scraped from the ink of the original font, to again existed a blank sheet.

But often, the memory of the first text received - a potential treasure trove for scholars. To make the font remains readable again, researchers used in the 18th and 19th centuries, various tinctures, as Grusková reported. However, these chemicals also deployed a destructive effect: So the text was indeed decode and write the content, but the manuscript itself was slightly lost for posterity.

Modern technology has since been ready much more elegant solutions. Grusková, who works at the Austrian Academy of Sciences in Vienna, is currently working together with their colleagues Gunther Martin of the University of Bern in mind, the "Codex Vindobonensis historicus gr. 73" to elicit its secrets. The Austrian Science Fund FWF funded the project.The band eleven palimpsestrierte leaves were added in the 13th century at the end. On them monks monastic rules and prayers were written.

The parchment sheets originally come from two different manuscripts from the 11th century. Their text fragments were indeed discovered decades ago, but they were not using the UV light still frequently used read carefully. Too weak were the ink traces.

Let there be light

A collaboration with American experts has now brought the breakthrough. The technical team of the Early Manuscripts Electronic Library (EMEL), a research organization based in Los Angeles, traveled to Vienna with his equipment and sat there a newly developed multi-spectral method. In this case, the sheets are irradiated with light of different wavelengths.Each is absorbed to different degrees of parchment and ink.

The degree of absorption can be noted on specific photographs. The scientists then add the images in the computer together and get so amazingly detailed illustration of the hidden font. The readability of the text has been increased from 15 to 60 percent, says Jana Grusková. Now open up whole sentences and the content.

Most of the palimpsests of the Codex contains reports on the lives of saints. Particularly interesting are the last two double sheets: You seem a copy of Scythica to be taken by the Greek historian Dexippus of Athens. A small sensation.Because so far were of this work only quotes and transmitted clippings known.

Dexippus lived in the 3rd century AD. In the Scythica he describes how his time come Gothic tribes on the southern Balkan Peninsula. Today Greece and the areas north of it were under the Roman Empire at that time. The invaders left devastation. Several cities were sacked, including Thessaloniki and Athens.

Reports of resistance

The history of these campaigns is considered to be poorly documented. There has been no detailed representations of witnesses. The Wiener palimpsests but can obviously close some gaps in knowledge. The Dexippus attributed both texts report on the invasion by a Gothic army led by Prince Cniva during the years 250/251 and 267/268 on the so-called Herulereinfälle. The first fragment included a certain Ostrogotia is mentioned. He was probably a Gothic chieftain and was already surfaced in other, later writings. "Many say that was an invention," says Gunther Martin. "We now have a contemporary source that confirms that a man of that name really exists."

The second part of the text contains a more important and hitherto unknown facet. The chronicler reports on the collective resistance of Hellenic troops from different cities.They had the advancing Goths, here called Heruli, contrasted together at Thermopylae - where the country was 687 years before that defends against the Persians. Dexippus, the Greeks represent a unity, but what they were not, as Martin says. "It conjures up the Hellenism." However, the command had a Roman official.

For a fascinating detail, the researchers did not need technology: A prominent previous owner of the tape purchased by de Busbecq, Theodosius IV, Patriarch of Antioch, has left on the last page of a warning to potential thieves. "The one who alienates these Codex, may the indissoluble excommunication by the Father, the Son and the Holy Spirit subject and suffer the fate of the traitor Judas. " No question, the man loved his books. (Kurt de Swaaf, THE STANDARD, 10/29/2014)

Read More Read Full Story »
Original Source: der Standard

Landsat Ghostbusters—How the Landsat Calibration Team Caught a Ghost
Remote Sensing

Oct. 31, 2014

A Landsat thermal image with banding

Shortly after the launch of Landsat 8, the calibration team noticed something strange: bright and dark stripes, or “banding” was showing up across certain images collected by the satellite’s Thermal Infrared Sensor (TIRS). Prelaunch testing of the sensor had indicated that highly accurate measurements (within 1 Kelvin) with little “noise” could be expected—what was going on?

Then, when Landsat 8 collected data as it under flew its predecessor, Landsat 7, en route to its home orbit, thermal measurements of the same region of Earth taken at the same time by the two satellites—which should have been the same—showed several degrees of error.

Something was definitely wrong.

To solve this mystery, the Landsat calibration scientists had to look for clues.

Above right: A TIRS (band 11) image over Los Angeles and the Pacific Ocean showing significant “banding.” Image credit: Schott et al., 2014

Clue #1—Near & Far
The Landsat calibration scientists, or cal team, next compared the radiance measurements made by the TIRS instrument to ground-based measurements made from lake-based buoys. This process of comparing satellite measurements to “ground truth” is called absolute calibration.

The absolute calibration verified that there were significant errors for certain scenes that were severe enough to violate Landsat’s rigorous quality requirements.

Oddly, while errors were detected in TIRS’ thermal measurements of the ground, internal calibration measurements (measurements of an onboard light source called a “blackbody”) were good.

In fact, looking at just the onboard calibration, TIRS was exceeding its performance requirements for both noise and stability.

“The calibration results from the onboard blackbody indicate that the instrument is extremely stable. The absolute calibration data was giving us comparatively huge errors; that doesn’t square with an instrument that looks to be rock solid,” calibration scientist Julia Barsi explains.

This discrepancy told the cal team that when the telescope was looking at a uniform source of energy that filled the telescope’s field-of-view, the problem disappeared.
Clue #2—Overlap

Banding over Lake Superior

A TIRS image of Lake Superior, with the three different SCA contributions shown. Notices the banding at the SCA borders at positions 1–4. Image credit: J. Barsi

The TIRS instrument uses a new focal plane technology to detect thermal radiance called Quantum Well Infrared Photodetectors, or QWIPs. It takes three staggered QWIPS to cover Landsat’s 185-meter swath width (each of these QWIP modules are referred to as Sub Chip Assemblies, or SCAs.)

The center SCA overlaps with portions of the right and left SCAs. In the places of overlap, coincident measurements of the same ground location are made—and should measure the same radiance. But in some cases their measurements drift apart causing that “banding” that first alerted the cal team to a problem.

The cal team ran tests to make sure the environmental conditions aboard the satellite were stable and that varying temperatures on the focal plane were not causing the problem. The focal plane needs to be uniformly cooled to less than 40 K (-388º F), while the telescope optics need to operate at 186 K (-125º F).

Conditions proved stable.

So now the cal team knew the instrument’s operating environment was not the problem and that the errors were not being caused by any internal instability.

Clue #3—Hot & Cold, Time & Place
In scenes that showed both desert and sea, the cal team noticed that the SCA overlap differences seemed to loosely correlate with the transition from hot land to cool sea, and these differences appeared to vary with season—they were worse in the summer. Also, the TIRS image radiance wasalways higher than “ground truth” measurements.

Red Sea Landsat image with Banding

A TIRS (band 11) image of a scene over the Red Sea (left) and a context map from USGS Earth Explorer (right). The image data from the three SCA focal plane arrays is evident due to banding in the across track direction. Image credit: Montanaro, et al., 2014.

Given all of these clues, the cal team started to suspect that radiance from outside of the scene might be scattering into the telescope’s field-of-view, making some radiance measurements higher than they should be. This would also explain why the errors were varying—energy from varying places was hitting the detectors as the satellite collected data along its path. And it would explain why the errors were worse in the summer, when the surrounding land and water were warmer.


Looking to the Moon for Answers

The ghost signal

At this particular lunar position, a ghost signal appears on both bands in array-A. Image credit: Montanaro et al., 201

To test this stray light theory, the cal team needed a bright, concentrated light target, surrounded by darkness that could be imaged to see if any energy from outside the telescope’s field-of-view showed up in the data before the telescope set its sights on the target.

A signal from an out-of-field source, or a “ghost signal,” could be found this way.

The moon held the answer.

The moon, a bright object surrounded by darkness, was the perfect target. Landsat 8 looks to the moon each month as part of its calibration process.

Lunar scan data confirmed that light from the moon was showing up in the data before the moon was in the telescope’s field-of-view.

The cal team had found a ghost.


Putting it Together

ghost source

The on-the-ground ghost source. The blue box in the center shows where the Landsat scene is relative to the ghost source (the blue semi-ring shape). Image credit: Montanaro et al., 2014

The cal team had confirmed that stray light (i.e., the “ghost signal”) was causing the errors they were seeing.

“The error in bias was a direct result of the stray light, since more radiance was getting to the focal plane than should be.” Barsi says.

The ghost signal has added as much as 8 K to data readings for the second TIRS thermal band, or band 11. Band 11 errors are typically double those of TIRS’ first thermal band, band 10.




Finding the Ghost-maker

TIRS diagram

The retaining ring on the third lens was found to be the ghost-maker. Image credit: TIRS optics team

After an especially designed lunar scan, the TIRS optics team (the team that built the instrument) used reverse ray tracing to find the surface within the TIRS instrument that was causing the out-of-field reflections as well as the source regions “on the ground” that the errant surface was reflecting.

A retaining ring for the third TIRS lens was found to be the errant reflective surface in the instrument. This piece of hardware that keeps the third TIRS lens in place was also reflecting unwanted energy onto the focal plane.

The ghost-maker had been found.

The lunar scan together with the ray tracing also identified the out-of-field regions on the ground that the retaining ring was reflecting.



Cal team

Some of the Landsat cal team members, i.e. the Landsat Ghostbusters. Image credit: Nina Raqueno

Getting rid of the TIRS ghost to fix the data is no small undertaking.

After the discovery of where on the ground the extra signal is coming from, the cal team can now calculate what the contribution of that extra signal is, and then subtract that from the TIRS measurements to get the accurate answer.

Since the place on the ground where the extra signal is coming from is outside of the Landsat scene, the cal team needs to use coincident data collected by a satellite with a broader field-of-view. Currently they are using data from a geostationary weather satellite (GOES) to figure out the radiance measurements coming from out-of-field and feeding that into their calculations. This involves accounting for the different orbitology, geometry, and sampling of the wide field-of-view satellite and Landsat.

And these calculations need to be made for each TIRS detector—all 2000 of them.

It’s good to have a crack cal team.

Cal team member John Schott said that the solution the cal team is now working on will be tested this winter and spring. Once the team is satisfied with their results, the methodology will be implemented by USGS into their Landsat 8 ground processing system. Once the cal team delivers the solution, the implementation process will take about a year to implement. For now,USGS advises to only use TIRS band 10 for thermal measurements.


John R. Schott, Aaron Gerace, Nina Raqueno, Emmett Ientilucci, Rolando Raqueno, Allen W. Lunsford, (2014). Chasing the TIRS ghosts: Calibrating the Landsat 8 Thermal Bands. Proc. of SPIE: Earth Observing Systems XIX,v. 9218,

Matthew Montanaro, Aaron Gerace, Allen Lunsford, Dennis Reuter, (2014). Stray Light Artifacts in Imagery from the Landsat 8 Thermal Infrared Sensor. Remote Sens.,v. 6, no. 11, p. 10435-10456.

Read More Read Full Story »
Original Source: NASA Landsat Science

Imaging Science Undergraduates Tackle Ambitious Summer Research Projects
Student Stories
Color Science

Aug. 9, 2011
Amy Mednick

On the exterior it seems Brick City is sweltering and sleepy this summer, but expectations are high and real-life research is steaming along for two undergraduates in Professor Jinwei Gu’s color science labs. Students Kevin Dickey (below left) and George Huaijin Chen are steeped in the scientific method as they tackle research projects that they will present at the 20th Annual Summer Undergraduate Research & Innovation Symposium on August 12th.  







Sophomore Kevin Dickey has set an ambitious summer goal of creating an inexpensive, hand-held material classifier, or “gloss meter,” initially hoping to use LEDs (light-emitting diodes) as sensors. In his research, the sophomore from Peoria, Illinois has taken on the life of an imaging scientist and truly embraced the scientific method. Dickey has researched, ordered, and tested LEDs, graphed their performance, and written up pages and pages of data and results concerning the ins and outs of using the devices as sensors. (You can follow Dickey’s progress at http://led-brdf.wikispaces.com.)

Dickey is building an inexpensive version of a device normally costing around $5,000 that will classify the surface gloss of, for example, a countertop or a wall. Dickey envisions a hemispherical device armed with LEDs to sense the object and then transmit the information to a software program that will produce a graph describing the material. He has tried white LEDs, red LEDs, expensive and inexpensive models. His original purchase of several low quality LEDs at Radio Shack actually yielded good results, but two identical LEDs could not sense each other’s specific wavelength of light, a critical criterion for Dickey’s instrument. In other words, the LEDs worked perfectly for the average consumer, but not for an undergraduate researcher.

In the process, however, Dickey has learned the basics of circuitry and refined his knowledge of coding, and he is communicating his progress on a daily basis. Most recently, Dickey realized that because modern LEDs are now used so commonly in all kinds of lighting , there is no need for them to function well as sensors. Instead, Dickey says, he has decided to turn to phototransistors, which are inexpensive, fast, and similar in size to LEDs. “The physical dimensions are especially important because a sensor that is round and shaped like an LED will allow for easier mounting within the final gloss measurement device,” Dickey says. “I’m currently testing a new set of phototransistors as we speak, expecting some good results. They are, after all, designed to sense light!” There is hope, after all, for Dickey’s inexpensive material classifier.

Chen—a double major in Management Information Systems and Imaging Science from Shenzen, China—received  $3,000 in support from the Summer Honors Program to design a system that solves the problem of false exposure in digital cameras. This adaptive, programmable camera system allows Chen to control the shutter of the camera at the level of an individual pixel with the goal of producing more detailed images and, eventually, improved color. Most conventional digital cameras with a single aperture have limited dynamic range, which makes it difficult to preserve the same details in the bright and dark areas of a potential shot. In order to capture high dynamic range (HDR) images, current technology forces photographers to shoot multiple images of the same subject. And, if the subject is moving, this method doesn’t even work. To explore new methods, Chen is using an LCD monitor without a backlight to control the transparency of each pixel. Chen has used the program MATLAB to create a code in which each pixel has a unique exposure. Chen’s software program will give him the ability to increase the amount of light that is hitting an underexposed area on the sensor, while blocking light on an overexposed area, thereby preserving details in both bright and darks areas of the image. His system is now a working prototype, complete with a platform for the LCD modulator built from LEGO bricks.

“The future goal of this system is to enhance the color range of the camera,” Chen says. He plans to continue this work as his senior project. Will we see this technology at Best Buy in the next five years? “It's hard to say,” Chen says. “It usually takes years for new technologies to go from lab to market. We will try our best."

Read More

CIS Undergraduate Sleuths Origins of Historic Documents at Library of Congress
Student Stories
Cultural Artifact and Document Imaging

Nov. 16, 2012
Amy Mednick

Most undergraduates do not get to experience a summer working alongside Library of Congress preservation experts and curators in preserving 500-year-old documents. Chester F. Carlson Center for Imaging Science junior Maggie Castle got that opportunity. For nine weeks last summer, Castle worked on a diary from the mid-15th century and a 1513 Ptolemy atlas that few people ever see, let alone examine in great detail.

During Castle’s Freshman Imaging Project, the students created a polynomial texture mapping device, which allows imaging scientists to study the texture of an old document.  Dr. Fenella France, chief of the Preservation Research and Testing Division at the Library, was invited to speak to the class and Castle became intrigued by her work. Later, she visited France’s lab during a vacation to Washington, D.C.

Inspired by her visit, Castle applied for and received an internship in the Preservation and Testing Division at the Library of Congress in Washington, D.C. to work on three separate projects using spectral imaging at ultra violet, visible, and near-infrared wavelengths. CIS Professor Roger Easton agreed to fund the internship last summer.

“Maggie's interest was fortuitously timed, as I had spent the summer of 2011 at the Library helping to develop some of the techniques used to process the imagery,” Easton said. “The value of such an opportunity to an undergraduate student is incalculable, and she will find that the techniques she utilized are applicable in a wide range of disciplines, including medicine and environmental remote sensing."

Initially, Castle delved into assisting experts in figuring out the origins of the nautical diary of 15th century German mathematician and astronomer Johannes Müller von Königsberg (1436-1476), known as Regiomontanus. The diary consisted of a collection of astronomical calculations and sketches that paved the way for the transition from the Julian calendar to the Gregorian calendar, which we presently use, in 1582. Castle used spectral imaging to extract watermarks in an effort to determine where and when it was printed. She found four watermarks and “hidden text” on six of the 15 imaged pages.

“The challenge was there was a lot of guess and check work,” Castle says. “After using the software, you had to experiment with different bands to try to get the watermark to pop out and visually discern it from the background.”

For her second project, part of an effort to preserve the diary and other documents from the same time period, Castle was charged with investigating the reactivity of iron gall ink, also using spectral imaging. This would help preservation scientists select a method to assess treatments for stabilizing ink on historic documents. Iron gall ink, made from iron salts and tannic acids, was common during this time period up to the 20th century. Iron (II) sulfate heptahydrate, contained in the ink, is corrosive to paper. Castle was able to figure out, using a spot test, the percentage of reactive Iron(II) in test prints to create plots depicting the change in this percentage over time for various preservation methods.

Finally, Castle had the extraordinary experience of working with a 1513 edition of the Ptolemy Atlas, one of three copies of this rare book published by Johannes Schott in Strasbourg. The goal was to figure out which pigments had been used in hand-coloring the map. Once again, spectral imaging allowed Castle to examine the document non-invasively and to separate the image set into a set of spectra that can help determine the mixture of pigments at point (pixel) on the image. She then compared these spectral curves and compared them to existing pigment samples. In the final weeks of the internship, Castle discovered that fustic, a yellow, might have been used.

”Maggie Castle showed great enthusiasm for her work in the Preservation Research and Testing Division, and a true appreciation for the uniqueness and importance of these rare collection items at the Library,” Dr. France said. “Many people ask what is the most challenging part of what we do, and I often answer, that there is no room for mistakes; objects we are working with are often the only copy remaining in the world. Maggie’s background in imaging science provided an excellent grounding for the work we do here at the Library, and we were delighted to have her as part of our preservation team over summer.”

While Buffalo native Castle wouldn’t mind returning to Washington D.C., where her sister lives, she needs to buckle down and work on her senior project next summer. 

Read More

Keeping the Spirit of Innovation Alive
Student Stories
Independent Research

Sophomores turn enthusiasm for research into year-long extracurricular project funded by CIS Microgrants Program

Apr. 22, 2013
Amy Mednick

Squeezing in time between classes and convening late at night in a lab at the Chester F. Carlson Center for Imaging Science (CIS), a group of sophomores is harnessing their powers of innovation, creativity, and independence to design and build a volumetric display system in time for Imagine RIT. These six budding scientists got the bug to “do” science during their­ Freshman Imaging Project class and resolved to extend the research and their collaboration into their sophomore year. The team—in cooperation with six software engineering students—will present a working prototype of their volumetric display of three-dimensional data at this year’s festival on May 4.

Entering the lab inhabited by the student-led team, the creative energy is palpable. Laptops and papers tile the large, round table, the whiteboard is filled with calculations, and a “12  days” countdown to Imagine RIT is posted in the corner of the board. Equipment abounds and a tall cart houses the volumetric display designed to project an image that is truly three dimensional.  When the students begin to talk, they obviously know each other well, respecting others’ voices even as they finish each other’s sentences and piggy-back on ideas. “We work really well as a group together and I think this is why we did this,” says Brooke Saffren, of Doylestown, PA, who is a biomedical science major and imaging science minor.

 “We all share the same direction,” adds Doug Scott Peck, an imaging science major, from Syracuse. “Ultimately, we all have the same goal and respect each other’s opinion. That mentality was formed in the freshman imaging project.”

During the yearlong freshman project, students are challenged to work collaboratively, in a student-centered, lab-based environment, to research, design, and build a functional imaging system in time to exhibit at Imagine RIT. At key points during the year, the team presents their plans and progress to a group of faculty evaluators from across campus and at the end of the year the students unveil the finished system at Imagine RIT. The project, which invariably creates a strong bond between the students, replicates the professional interactions and assignments that they might face in future careers.

“You can be super smart in academia, but if you can’t work with a group of people and take constructive criticism and give constructive criticism, then you can’t apply that knowledge in a coherent way,” says Cicely DiPaulo, an imaging science student from Pittsford, NY.

Last year, Freshman Imaging Project coordinators, CIS Associate Director Joe Pow and Dr. Maria Helguera, professor of imaging science, tasked students with responding to a need for an imaging system that would allow physicians to assess whether individual patients would respond well to intubation. Intubation involves inserting a ventilation tube into the patient’s mouth and trachea during general anesthesia. “We had to build a system that would attempt to eliminate physician error.  Before, whether or not someone could be intubated was done by doctor’s determination,” says Megan Iafrati, an imaging science student, of Greece, NY.

University of Rochester physician Dr. Jacek Wojtczak and postdoctoral researcher Dr. Bo Hu asked the class to create an imaging system that could use quantitative measurements of a person’s facial features to assess a patient’s susceptibility to intubation. The team of students developed a system that would project black and white striped patterns of different widths onto a patient’s face. They then developed software that would reconstruct a three-dimensional image—what the students described as a “point cloud”— from the observed deformation of the patterns. The point cloud could then be used to generate a lifelike 3D image of the subject.

“At Imagine RIT last year, I spoke with a woman who couldn’t be intubated. She had a really bad experience, so she was excited that we were doing this project,” Iafrati says.

“Our favorite thing about this project was that as freshman coming right out of high school, we were given the responsibility to do a real project helping physicians with something that they actually need,” DiPaulo says.

At the time, DiPaulo felt that she did not want the experience to end, and she decided to do something about it.

DiPaulo approached some of her fellow students about the idea of continuing the experience in their sophomore year. Saffren, Iafrati, Peck, imaging science student Rose Rustowiscz, and Sean Cooper, who is a Motion Picture Sciences major, all expressed interest in the project. Over the summer, the students attempted to set up the project as a class, which proved too complicated. At the last minute, the team applied for and received a $3,800 CIS microgrant to fund supplies. By November, CIS had provided a lab space and the project was underway. Later in the year, a group of software engineering students joined the team.

Rustowicz, from Cheektowaga, NY, says they were able to succeed with the freshman project even though they had little experience with research and development because they were not afraid to ask questions and seek guidance from faculty, staff and students. “We knew what we didn’t know,” she says.

The sophomores this year say they had a better sense of how to organize the project, including drawing up a schedule with specific milestones. Each week they meet for an hour and hold a two-hour workshop in addition to their independent work on the project.

“The team has demonstrated fantastic organization, their goals are quite clear and they have managed to stay on schedule,” Professor Helguera says. “It is incredibly motivating, as an instructor, to walk in that room and watch them work, discuss, and above all, enjoy themselves.”

After a year of effort and input from their engineering teammates, they now have a functioning system. In the students’ words, the system is “composed of a projector that displays 96 unique images of the object being displayed onto a mirror set to spin at a certain number of rotations per second. The synchronization between these two factors is what allows the display to be proportionally correct as well as being able to be seen from different viewpoints.”

The students are planning to give a presentation about their volumetric display at the Hawaii University International Education and Technology Conference this summer.

“When we started this, we weren’t completely lost like we were last year. I can’t put to words how helpful [the freshman imaging project was for us]. If you know generally how to attack a problem, then there is no reason it can’t be solved,” Cooper says.

Read More

CIS Student Picked as John Wiley Jones Scholar
Student Stories
Remote Sensing

Imaging Science student Chris Lapsznyski recognized for outstanding senior project research

Jun. 24, 2013
Amy Mednick

Chris Lapsznyski says his professors’ enthusiasm for tackling difficult problems is contagious. That’s why he has devoted countless hours to developing sophisticated mathematical algorithms to pull out important features from hyperspectral remote sensing imagery. This dedication has not gone unnoticed. The College of Science recognized Lapszynki as one of the John Wiley Jones Scholars this spring for outstanding senior project research with Professor David Messinger.

Traditionally, researchers in the field of remote sensing have mainly taken advantage of color differences when trying to classify objects in images. For his senior project, Lapszynski figured out mathematical algorithms that could add spatial information to tasks such as anomaly detection and image classification. “The algorithms and some of the codes handle hyperspectral imagery on the order of hundreds of bands,” he says.  “The highest I’ve used is 231 bands.”

Lapszynski has used graph theory to analyze spectral imagesin a way that integrates the spatial and spectral information. “The graph theory approach allows the data to speak for itself, while in traditional methods you were interpreting the data without having prior knowledge of what it might be,” he says. Still, the graduating senior says he is not yet sure how best to construct these graphs. “We have different methods, but we don’t know which one is the best. It depends on the application. The math side has been around for hundreds of years, but applying it to this type of data is a recent development.”

After critical time spent working on the theoretical problem, Lapszynskiapplied the theoretical work to actual imagery collected with the airborne HyMAP sensor.  In one image tile of a scene in high resolution, for example, a river that ran alongside the road popped into view more clearly with the new techniques. “We’re not sure why. One guess is that the river is more anomalous than the road. (The spatial imagery) might have considered the road as background because there was a lot of upturned gravel and dirt in the scene,” he explains.  With the new technique, Lapszynki could better distinguish, for example, between manmade and natural materials. These techniques may eventually be useful for researchers studying deforestation in the Amazon, in the mining industry, or for farmers interesting in analyzing different types of soil.

The John Wiley Jones Award for Outstanding Students in Science is given to students in each of the six departments in the College of Science in recognition of their academic achievements and their contributions to the entire campus as good citizens.  Lapszynski, who recently presented his senior project research, says he was surprised to be nominated to receive the award.  “It was an honor to receive the award knowing that the faculty and staff chose me to be a recipient of the scholarship, especially since other individuals in my class have dedicated just as much time and effort into their education,” he says.

But the Director of the Chester F. Carlson Center for Imaging Science, Stefi Baum, said that Lapszynski was a very deserving choice. In addition to his outstanding research activities, Lapszynski was a very active RIT citizen. During his college career Lapszynski has not shied away from outreach activities. He devoted himself this year to helping the freshman imaging project students in their efforts to calibrate their camera system and in answering any of their questions. As president of the Imaging Science & Technology Society for the past two years, Lapszynski organized weekly colloquia for the student body from industry representatives, CIS staff and even students working on cutting edge technologies related to the field. “Topics ranged from remote sensing, to astronomical, biomedical, visual perception, art preservation/historical manuscripts, digital image processing, and much more.”

Lapszynski, who is from Philadelphia, will graduate and move to Dayton, Ohio to work for CACI, a defense contractor, doing work similar to his senior project.

Read More

Undergraduate Takes Full Advantage of Unique Opportunities at Chester F. Carlson Center for Imaging Science
Cultural Artifact and Document Imaging
Student Stories

Carrie Houston, a third-year undergraduate, is enjoying exploring all of the opportunities afforded to her at the Chester F. Carlson Center for Imaging Science at RIT.  

Feb. 18, 2011
Rachel Pelz

An honors student with a minor in Math, Carrie is currently doing research with Roger Easton, a faculty member at the Center. "There's a lot of history involved with our project," she says. "We're doing image processing on pages of a journal of David Livingstone's, trying to recover the handwritten text so scholars can read it."

Carrie also recently completed a five-week study abroad program in Australia and New Zealand. "It was field studies," she says about her time there, "we went camping and kayaking and climbing mountains. It was a really interesting and amazing experience."

As a high school student looking for undergraduate programs, Carrie's photography teacher recommended the Photo Tech program at RIT. "I always liked the technological side of photography," says Carrie, "so I started to look [at RIT's programs] and I found Imaging Science." As she was researching, she discovered that her uncle received his Master's from CIS and he encouraged her to apply. She was excited to find a program that "has so many kinds of sciences involved, so many disciplines. I liked chemistry, biology, math. I knew I would get a good background."

During the application process, Carrie came to visit CIS at an open house they held for prospective students. "I got one-on-one attention from everyone here," remembers Carrie. "One of the students came and talked to me and Maria Helguera brought me to her lab. I didn't get that experience at any other school I visited." She says she eventually chose CIS because of "the uniqueness of the program, the individualized attention, and seeing how close everyone is."

And why is she glad she chose the Imaging Science program at RIT?

"You can't get this program anywhere else," she says. "Not even close!"

For more information on the Livingstone project, please see: http://www.neh.gov/news/humanities/2010-09/Livingstone.html

Undergraduate student builds tabletop Schlieren System with help from CIS Microgrants Program
Student Stories

Air is defined as "the invisible gaseous substance surrounding the earth..." What if you could picture the invisible? It is possible with a Schlieren Imaging System.

Mar. 21, 2014
Lisa Powell

Taking inspiration from a 2012 lecture on the subject given by Professor Gary Settles, who was visiting RIT from Pennsylvania State University, Chester F. Carlson Center for Imaging Science student Dan Goldberg decided to create a portable Schlieren System.

"I thought it was really cool, so at the next meeting of the SPIE Student Chapter at RIT I suggested we make one of these things that would be cool to look at and small enough to take to a classroom."

Schlieren is the German word for "streaks." When layers of air or gas differ in density from one another they become visible as transparent streaks or waves. A Schlieren System allows us to view this phenomenon.

When a ray of light hits something that has a different density than the air around it, the light will bend. This is called refraction. Think of the shimmering mirage rising up from an asphalt road on a hot day.  What looks like a pool of water in the distance is not what it appears to be, yet it is very real. The rays of light from the sky are being bent as they pass through the hot air rising from the ground.

Goldberg's Schlieren System uses a knife edge, a spherical mirror, and a light source to show such variations in atmospheric density. Adding the knife-edge to the System refines it "so you can see someone's breath or the heat coming off of someone's hand."

Because he was so inspired by the subject, Goldberg wanted to bring the concept to a wider audience, so, using a microgrant from the Carlson Center for Imaging Science, Goldberg designed a portable, 5-foot, single-mirror Schlieren System. Goldberg's faculty sponsor for the project was Dr. Dale Ewbank, who teaches microelectronic engineering at RIT.

Two of Goldberg's fellow students went to the SPIE annual conference in San Diego during the summer of 2013. At the meeting, they exhibited the compact Schlieren System; several people inquired as to how they could make such a system and show it to others. The System was also displayed at last year's Imagine RIT, and is expected to make an encore appearance at this year's event.

"The science behind this whole technique is old and has been known for a while; you don't need a high level of physics to understand it. That means it can be explained to high school students," Goldberg explains. He adds that Robert Hooke started experimenting with these systems soon after he discovered the schlieren phenomenon in the 17th century. At that time it was used to find imperfections in lenses and mirrors and that remains one of its uses today.

The system can be applied in medicine to observe how the breath produced by a cough moves through the air, or in fire science to observe the way heat comes off of burning leaves or pine cones, or simply to observe a gas leak in an enclosed space.

"It is an analog technique," explains Goldberg: an experiment performed "sort of the old-fashioned way."

After he graduates from RIT this year, Dan Goldberg plans to apply to graduate school, but his main focus is on finding a job to help him get through more school, perhaps working in computer science.

Read More