Основы МРТ

Глава 11

АРТЕФАКТЫ ИЗОБРАЖЕНИЙ



Введение

Артефактом изображения является любая черта, не присутствующая в отображаемом объекте, но присутствующая на изображении. Артефакт изображения иногда является результатом неправильного действия при использовании томографа, а, иногда, является следствием естественных процессов или свойств человеческого организма. Обычно артефакты классифицируются в соответствии с их источником. Следующая таблица обобщает некоторые из них.

Артефакт Причина
РЧ квадратурный артефакт Неисправность в схеме РЧ детекции
Артефакты негомогенности поля Bo Искажение поля Bo металлическим объектом
Артефакты градиентов Неисправен градиент магнитного поля
RF Inhomogeneity Неисправность РЧ катушки
Motion Движение отображаемого объекта во время последовательности
Артефакты потока Движение жидкостей организма во время последовательности
Артефакты химического сдвига Большие Bo и химический сдвиг между тканями
Артефакты частичного объема Большой размер воксела
Артефакты заворота Неправильный выбор поля обзора

Далее будут представлены примеры каждого артефакта. Необходимо предупредить читателя, что любая проблема с томографом может проявлять себя разными способами. Поэтому не все приведенные артефакты будут выглядеть одинаково.

РЧ квадратурный артефакт

РЧ квадратурные артефакты являются следствиями проблем схемы РЧ детекции. Если быть более точным, РЧ квадратурные артефакты обычно связаны с описанным в главе об аппаратуре фазочувствительным детектором. Эти проблемы возникают из-за неправильных действий над двумя каналами детектора. Например, если на выходе одного из усилителей будет присутствовать смещение постоянной составляющей, подвергнутые преобразованию Фурье данные могут отобразить яркое пятно в центре изображения. Если один канал детектора имеет больший коэффициент усиления, это приведет к появлению ложных изображений диагонально на изображении. Этот артефакт является результатом технической неисправности и должен быть адресован к представителю сервиса.

Артефакты негомогенности поля Bo

Вся магнитно-резонансная томография предполагает гомогенность магнитного поля Bo. Негомогенное поле Bo будет искажать изображения. Искажение может быть пространственным, интенсивностным или оба одновременно. Интенсивностные искажения являются результатом локальной негомогенности поля, которое может быть больше или меньше, чем остальные части отображаемого объекта. T2* в этой области отличается и, поэтому, сигнал может отличаться. Например, если гомогенность ниже, T2* будет короче, и сигнал будет меньше. Пространственное искажение является результатом протяженных градиентов поля в Bo, которые постоянны. Они заставляют спины резонировать с частотами Лармора, отличными от предписанных отображающей последовательностью.

На изображении представлены четыре прямых, заполненных водой трубы, расположенных в виде квадрата. На МР-изображении видно сильное искривление одной из труб, связанное с неоднородности магнитного поля Bo.

Артефакты градиентов

Артефакты, возникающие из-за проблем в системе градиентов иногда очень похожи на те, что связаны с негомогенностью поля Bo. Градиент, непостоянный по направлению градиента будет искажать изображение. Обычно, это является возможным только при повреждении градиентной катушки. Другие, артефакты, связанные с градиентом, являются результатом неправильных токов, проходящих по градиентным катушкам. На следующем изображении частотно-кодирующий градиент (кодирование лево/право) функционирует лишь наполовину от ожидаемого значения.

Артефакты РЧ негомогенности

Проблемой РЧ негомогенности является изменение интенсивности поперек изображения. Причинами этого могут являться либо неоднородность поля B1, либо неоднородность чувствительности в только-принимающей катушке. Некоторые РЧ катушки, как, например, поверхностные, исходно имеют неоднородность в чувствительности и всегда будут приводить к этому артефакту. Наличие этого артефакта при использовании других катушек говорит или о неисправности какого-либо элемента РЧ катушки, или о наличии неферромагнитного материала в отражаемом объекте. Например, металлический объект, препятствующий проходу РЧ поля в ткань, будет приводить к занулению сигнала в изображении.

Прилагающееся сагиттальное изображение головы имеет артефакт РЧ негомогенности в области ротовой полости. (Стрелка) У пациента имеется большое количество стоматологического неферромагнитного металла во рту. Эти материалы значительно не исказили статическое магнитное поле Bo.

Артефакты движения

Как и следует из названия, артефакты движения вызываются движениями отображаемого объекта во время отображающей последовательности. Движение всего объекта во время отображающей последовательности в общем приводит к размыванию всего изображения с наличием посторонних изображений по направлению фазового кодирования. Движение небольшой части отображаемого объекта приводит к размыванию небольшой части объекта на изображении.

Для понимания этого артефакта представим следующий простой пример. Отображается объект, содержащий один единственный спин. Центральная часть "сырых" данных MX будет приблизительно выглядеть так. Частота волн будет зависеть от положения на направлении частотного кодирования и различия в фазах волн будет зависеть от положения на направлении фазового кодирования. Сначала преобразование Фурье дает единственный осциллирующий пик по направлению частотного кодирования. Будет более понятно, если изобразить данные как функцию от фазы. Последнее преобразование Фурье дает единственный пик на расположении исходного объекта по направлению фазового кодирования.

Теперь представим тот же пример за тем изменением, что при прохождении половины времени сбора шагов фазового кодирования, объект перемещается в новое расположение по направлению частотного кодирования. Центральная часть "сырых" данных MX выглядит следующим образом. Вначале преобразование Фурье дает два осциллирующих пика по направлению частотного кодирования, которые внезапно прекращают осциллировать. Будет более понятно если изобразить данные как функцию от фазы. Преобразование Фурье по направлению фазового кодирования несколько повторяющихся пиков на двух частотах. Это происходит потому что парой Фурье для внезапно усеченной волны синуса является функция синуса. Представление данных по абсолютным значениям отображает все пики положительными.

Решением для артефакта движения является иммобилизация пациента или отображаемого объекта. Часто движение бывает вызвано сердечными сокращениями или дыханием пациента. Ни один из них не может быть устранен законным путем. Решением в этих случаях является подстраивание отображающей последовательности под сердечный или дыхательные циклы пациента. Например, если движения вызваны пульсацией артерии, то можно начать шаги сбора фазового кодирования через определенный промежуток времени после пика R сердечного цикла. При этом артерия всегда находится в одном и том же месте.

Похожее подстраивание может быть применено и к дыханию. Недостатком данного метода является то, что выбор TR часто определяется частотой сердечных сокращений или дыхания. Методики отображения направленные на устранение артефактов движения получили различные названия от разных производителей магнитно-резонансных томографов. Вот, например, несколько названий последовательностей, разработанных для устранения дыхательных артефактов: подстраивание под дыхание, компенсация дыхания и дыхательное триггерирование.

Прилагающийся аксиальный срез головы демонстрирует артефакт движения. Кровеносные сосуды в задней части головы пульсировали во время сбора. Это привело к появлению посторонних изображений на картинке.

Артефакты потока

Артефакты потока бывают вызваны токами крови или других жидкостей тела. Жидкость, протекающая через срез может испытать РЧ-импульс, а, затем, вытечь из плоскости среза до времени регистрации сигнала. Представим следующий пример. Для отображения среза используется спин-эхо последовательность. На рисунке представлены временная диаграмма и вид среза сбоку. Во время 90o-срез-селектирующего импульса, кровь в срезе поворачивается на 90o. Перед применением 180o-импульса, кровь, испытавшая 90o-импульс уже вытекла из плоскости среза. 180o-срез-селектирующий импульс поворачивает спины в срезе на 180o. Однако, намагниченность крови в срезе пред импульсом направлена вдоль положительного направления оси Z, а после импульса, вдоль отрицательного направления оси Z. Ко времени регистрации эхо, в срезе находится только та кровь, которая не испытала ни 90o, ни 180o-импульсов. Результатом является то, что кровеносные сосуда, которые, как мы знаем, имеют высокие концентрации ядер водорода, не дают сигнала.

Вот пример аксиального среза ног. Заметим, что кровеносные сосуды выглядят черными, хотя и содержат большое количество воды.

В мультислойной последовательности, срезы могут быть расположены таким образом, чтобы кровь, испытывающая 90o-импульс в одном срезе, могла втекать в другой срез и испытывать 180o поворот, а затем втекать в третий срез и способствовать возникновению эхо. В этом случае, сосуд будет иметь более высокую интенсивность сигнала. В результате, обычно, некоторые срезы имеют кровеносные сосуды с низкой интенсивностью сигнала, а другие, имеют кровеносные сосуды с высокой интенсивностью сигнала.

Артефакты химического сдвига

Артефакт химического сдвига вызывается разницей химических сдвигов (ларморовой частоты) жира и воды. Этот артефакт проявляет себя рассовмещением между пикселами жира и воды на изображении.

Разница в химическом сдвиге составляет приблизительно 3.5 ppm, что при 1,5 Тесла соответствует разности в частотах жира и воды приблизительно 220 Гц. Во время поцедуры выбора среза существует небольшое смещение между расположением тех спинов жира и воды, которые начали вращаться благодаря РЧ-импульсу. На следующей иллюстрации эта разница для наглядности преувеличена.

Во время работы фазо-кодирующего градиента спины жира и воды приобретают фазу с различными скоростями. В результате спины жира и воды, находясь в одном и том же вокселе, кодируются так, как будто они находятся в разных вокселах. В этом примере, во всех девяти вокселах - красные вектора воды. В дополнение к воде, центральный вектор имеет еще и жировую намагниченность. В однородном магнитном поле вектора прецессируют со своей собственной ларморовой частотой. Когда применяется градиент магнитного поля, такой как фазо-кодирующий градиент, спины, с разным расположением Х прецессируют с частотой, зависящей от их ларморовой частоты и поля. В этом примере, вектор жира имеет ту же частоту, что и вектор воды в вокселе справа от него. Когда фазо-кодирующий градиент выключается, каждый из векторов приобретает уникальную фазу, зависящую от его положения Х. Во время частотно-кодирующего градиента, спины жира и воды, расположенные в одном и том же вокселе, прецессируют со скоростями, отличающимися на 3,5 ppm. Суммарным эффектом является то, что спины жира и воды, находясь в одном и том же вокселе, кодируются так, как будто они находятся в разных вокселах. В этом примере, вектор жира в центральном вокселе обладает такой фазой и прецессионной частотой, как если бы он находился в правом верхнем вокселе. В конечном изображении, жир будет расположен в правом верхнем углу, а не в центре.

Величина эффекта зависит от величины магнитного поля Bo. Чем больше Bo, тем больше результат. При 1,5 Тесла эффект составляет приблизительно 2 пиксела. При 0,5 Тесла эффект составляет меньше чем один пиксел. На этом аксиальном изображении ног присутствует артефакт химического сдвига между жиром и мышцами ног.

Артефакты частичного объема

Артефактом частичного объема является любой артефакт, вызываемый размером воксела изображения. Например, если воксел очень маленький, он может содержать только сигнал жира или воды. Воксел большего размера может содержать комбинацию из двух и, следовательно, обладать интенсивностью сигнала равной взешенному среднему значению от процентного содержания воды и жира в вокселе. Другим проявлением этого типа артефакта является потеря разрешения, вызванная множественными признаками, представленными в вокселе изображения.

Здесь представлено сравнение двух аксиальных срезов через одно и то же место головы. Одно сделано с толщиной среза равной 3 мм, а другое - с 10 мм. Заметим утрату разрешения в изображении с толщиной среза 10 мм. Решением проблемы артефакта частичного объема является меньший размер воксела, что, впрочем, может привести к ухудшению соотношения сигнал-шум в изображении.

Артефакты заворота

Артефактом заворота является появление части отображаемого анатомического объекта, расположенного вне поля обзора, внутри поля обзора. Этот артефакт вызывается тем, что выбранное поле обзора меньше, чем размер отображаемого объекта. Или, более точно, скорость дискретизации меньше, чем диапазон частот спада свободной индукции или эхо. Решением для проблемы артефакта заворота является выбор большего поля обзора или выбор отображающей катушки, не возбуждающей или регистрирующей спины тканей за пределами желаемого поля обзора.

В прилагающемся сагиттальном изображении молочной железы часть изображения ниже стрелки должна была бы находиться наверху изображения. Она была "завернута" так как располагалась в месте, в котором резонансная частота была больше чем скорость диcкретизации. Поэтому она была "завернута" и проявилась внизу изображения.

Во многих современных томографах применяется комбинации дискретизации с повышенной частотой, цифровой фильтрации и прореживания (в цифровой обработке сигнала) для устранения артефакта заворота. Дискретизация с повышенной частотой создает большее поле обзора, но генерирует слишком большое количество информации, неудобное для хранения. Цифровая фильтрация устраняет высокочастотные компоненты данных и прореживание уменьшает размер набора данных. Следующая блок-схема подводит итог эффектов этих трех шагов, показывая результат преобразования Фурье после каждого из них.

Давайте более подробно рассмотрим дискретизацию с повышенной частотой, цифровую фильтрацию и прореживание для того, чтобы увидеть как комбинация этих трех шагов устраняет проблему заворота.

Дискретизацией с повышенной частотой является оцифровка временного компонента сигнала с частотой, намного превышающей необходимую для сканирования желаемого поля обзора. Например, если частота дискретизации fs, увеличивается в 10 раз, поле обзора увеличивается в 10 раз, тем самым устраняя заворот. К сожалению, дискретизация со скоростью в 10 раз большей, также в 10 раз увеличивает и количество "сырых" данных, тем самым увеличивая необходимость в месте для хранения и время обработки.

Фильтрацией называется удаление выбранного диапазона из частот сигнала. Для примера фильтрации представим следующий частотный компонент сигнала. Частоты превышающие fo могут быть удалены из частотного компонента сигнала умножением сигнала на эту прямоугольную функцию. В МРТ этот шаг эквивалентен выбору большого поля обзора изображения и зануление интенсивностей пикселей отстоящих далее чем на некое расстояние от изоцентра.

Цифровой фильтрацией является удаление этих частот с использованием временной компоненты сигнала. Возвращаясь к главе 5, если две функции перемножены по одной компоненте (например частотной), мы должны свернуть преобразование Фурье от этих двух функций вместе в другой компоненте (например, временной). Для отфильтровки частот превышающих fo из временной компоненты сигнала он должен быть свернут с прямоугольной функцией, подвергнутой преобразованию Фурье, функцией sinc. (См. главу 5.) Эта процедура удаляет частоты, большие чем fo, из временной компоненты сигнала. Подвергая преобразованию Фурье свернутый временной компонент сигнала, мы удаляем более высокие частоты из частотного компонента сигнала. В МРТ этот шаг удалит компоненты изображения fo / 2 Gf из центра изображения.

Прореживанием называется удаление точек данных из набора данных. Соотношение прореживания 4/5 означает, что удаляются 4 из каждых 5 точек данных или что сохраняется каждая пятая точка данных. За прореживанием данных подвергнутых цифровой фильтрации следует преобразование Фурье, что в результате всего уменьшит набор данных в 5 раз.

Для проведения этой методики используются высокоскоростные цифровые преобразователи, способные к дискретизации на 2 МГц и специальные высокоскоростные интегральные схемы, способные проводить свертку временных компонент данных по мере их регистрации.

Звон Гиббса

Звон Гиббса проявляется сериями линий параллельных краю с резкой интенсивностью на изображении. Звон вызывается недостаточной оцифровкой эхо. Это означает, что в конце окна сбора сигнал не спал до нуля, и эхо не было полностью оцифровано. (Читателю предлагается доказать это с использованием теоремы о свертке). Этот артефакт проявляется на изображениях с малой матрицой сбора. Поэтому, артефакт проявляется лучше в 128 ранге 512x128 матрицы сбора.

В следующем примере отображается прямоугольный объект с пространственно однородным сигналом. В горизонтальном (x) направлении собирается недостаточное число точек. В конечном изображении присутствует звон в интенсивности по краю. В окне для анимации представлен верхний правый угол этого изображения и график интенсивности сигнала.


Перейти к: [ следующей главе | началу главы | предыдущей главе | титульному листу ]

Copyright © 1996-99 J.P. Hornak.
All Rights Reserved.