OPTICAL IMAGE FORMATION
SIMG-738, Quarter 20083

TTh, 2:00PM – 3:50PM, 76-1235

Roger L. Easton, Jr., Office 76-2112, 475-5969, 475-5988 (FAX), rlepci@rit.edu
Office Hours: TBD, and by appointment

Course notes will be distributed

Other Useful Readings:

RIT Course Catalog Description:
This course presents a unified view of the formation of images and image quality of an optical system from an applications viewpoint, but with a strict mathematical development. Topics covered are: ray and wave theory of imaging, image quality measurements, image formation with coherent and incoherent light, and optical information processing. (nominal prerequisite is 1051-737, 1051-733 is also sufficient) Class 4, Credit 4 (alternate years, S)

Actual Description:
This course develops a mathematical description of optical image formation via mathematical modeling of light propagation through the imaging system by application of the principles of linear systems. The model is based on approximations of Huygens’ principle that light propagates via spherical wavelets. The propagation of light from plane to plane is modeled as a convolution with the impulse response appropriate to the model. The action of the optical element is a multiplication of the complex amplitude by the appropriate phase function. The mathematical description is based on the so-called “chirp Fourier transform.”

The course will develop the model for the single-wavelength case (“coherent” light) and will be generalized to the “incoherent” case, including a description of appropriate metrics for the optical system. Holographic imaging will also be considered.

Homework:
Problem sets will be handed out
Assignments due as scheduled, typically (but not necessarily) one week later
There may be some computer homework, with a two-week deadline.
I encourage you to work together on problems, but you must hand in your own answers.

Final Examination:
Take-home open-book problem set.
This course develops a mathematical description of optical image formation via mathematical modeling of light propagation through the imaging system by application of the principles of linear systems. The model is based on approximations of Huygens’ principle that light propagates via spherical wavelets. The propagation of light from plane to plane is modeled as a convolution with the impulse response appropriate to the model. The action of the optical element is a multiplication of the complex amplitude by the appropriate phase function. The mathematical description is based on the so-called “chirp Fourier transform.” The course will develop the model for the single-wavelength case (“coherent” light) and will be generalized to the “incoherent” case, including a description of appropriate metrics for the optical system. Holographic imaging will also be considered.

1. Review of the Wave Equation and Systems Analysis of Light Propagation
 i. Huygens’ principle, diffraction integrals
 ii. Measurable electromagnetic quantities: power
 iii. Quadratic phase factors
2. Review of the 2-D Fourier Transform
 i. Approximations to the Fourier transform
 1. Moments
 2. Method of Stationary Phase
 ii. Impulse response and transfer function of light propagation
 iii. Asymptotic evaluation of the diffraction integral in the Fresnel and Fraunhofer regions
3. Fresnel transform
 i. Effect of apertures and lenses on plane wave spectra, Abbé’s theory
 ii. Uncertainty in fields and transforms
4. Coherence of light
 i. Temporal coherence
 ii. Spatial coherence
5. Imaging Properties of Lenses from the Viewpoint of the Plane Wave Spectrum
 i. Plane wave spectrum analysis
 ii. Transfer function in coherent light
 iii. Transfer function in incoherent light
 iv. Modulation transfer function (MTF) of a perfect lens
 v. Sampling of fields and transforms, relation to information theory
6. Imaging Properties of Lenses from Viewpoint of Diffraction Integral
 i. Thin lens as “quadratic phase plate”
 ii. Fourier transforming property of lenses, shift-variant systems
 iii. Action of lens for plane waves and spherical waves
7. Metrics of Optical Image Quality
 i. Optical transfer function and point spread functions in coherent and incoherent light
 ii. Modulation Transfer Function
8. Optical Information Processing and Holography
 i. 4f correlator
 ii. Optical Transfer Function Synthesis
 iii. Incoherent processing by geometrical optics
 iv. Holography and computer-generated holography
 v. Optical matched filtering
 vi. Spatial carrier techniques