4 January 2010

Midterm 18th - 20th January 1/20/2010

Makeup Class 1/22 (?) 4-6 PM (?)

**Diffraction
Approximations to Reality**

Useful

(1) *Rayleigh - Sommerfeld* \(\Rightarrow\) Spherical Waves, LSV

(2) Fresnel \(\Rightarrow\) Paraboloidal Waves (Quadratic Phase), LSV

(3) Fraunhofer \(\Rightarrow\) Plane Wave (Linear Phase), A LSV

Convenient

Spherical Surfaces \(\Rightarrow\) Paraboloidal (Some Formula)

\[S(r) = \frac{1}{z^2} \]

Quadratic Phase
\[f(x_0, y_0) \]

\[h(x, y) \]

\[g(x, y) \]

\[S(x_0, y_0) \]

\[m_r = -\frac{\beta}{\theta} \]

Single wave-convergent \(\Rightarrow \) **Definite Phase Relationship** \(\Rightarrow h(x, y) \]

\[\frac{\partial}{\partial y} \]

\[m_x \neq m_y \]

Deterministic

\[h(x_0) \propto P \left[\frac{x}{\lambda_0 z_2}, \frac{y}{\lambda_2 z_2} \right] \]

\[h(x, y) \propto P \left[-\lambda_0 z_2 x, -\lambda_2 z_2 y \right] \]
Random Phase Case

\[\lambda_0 \rightarrow \lambda' \quad ("\text{mean" wavelength}) \]

Quasi-polychromatic light

\[h(xy) \leq |h(xy)|^2 \geq 0 \]

\[H[\xi, \eta] \leq H[\xi, \eta] \ast H[\xi, \eta] \quad \text{(via Wiener-Khintchine Theorem)} \]

Spheres \rightarrow Paraboloids
Deviations from Ideal

Fabrication Errors
ABERRATIONS - Deviations from ideal "Performance"

TBD

(1) CHROMATIC - variations with λ

$$n(\lambda) = \frac{c}{v(\lambda)}$$

\[\begin{aligned}
15 & \quad 2 \\
n & \quad \lambda \\
\end{aligned}\]

DISPERSION

(2) MONOCROMATIC ABERRATIONS

PARAXIAL IMAGE
\[\delta \Phi (x_0, y_0; x, y) \rightarrow \delta \Phi [v, \theta; v_0, \alpha] \]

If \(XP \) is circularly symmetric:

\[\Rightarrow \theta - \alpha \text{ that matters} \]

\[\varphi \equiv \theta - \alpha \]
\[\overline{\Phi} = 2\pi \frac{R}{\lambda_0} \]

\[R \]

\[R^2 = z^2 + (v \cos \theta - v_0 \cos \alpha)^2 + (v \sin \theta - v_0 \sin \alpha)^2 \]
\[= z^2 + v^2 \cos^2 \theta + v_0^2 \cos^2 \alpha + v^2 \sin^2 \theta + v_0^2 \sin^2 \alpha - 2vv_0 \cos \theta \cos \alpha + 2vv_0 \sin \theta \sin \alpha \]
\[= z^2 + v^2 + v_0^2 - 2vv_0 \cos (\theta - \alpha) \]

\[\overline{\Phi} \]

\[\text{Image} \]

\[z_\parallel \]

\[z \]

\[v \]

\[v_0 \]

\[\alpha \]

\[\theta \]
\[
\Delta \phi(r, r_0, \varphi) = \Phi_{\text{diffr}}(r, r_0, \varphi) - \Phi_{\text{known}}(r, r_0, \varphi)
\]

Describe \(\Delta \phi \) in terms of 10 components

1. \(\Delta \phi = \frac{2\pi r}{\lambda_0} \) - Constant phase due to Propagation

2. \(\Delta \phi = \pi \frac{r^2}{\lambda_0^2} \) - Quadratic phase at XP Defocus (Aberration?)

3. \(\Delta \phi = \pi \frac{r_0^2}{\lambda_0^2} \) - Quad phase at image plane Piston Error (Aberration?)

4. \(\Delta \phi = -2\pi \frac{\varphi - \varphi_0}{\lambda_0^2} \) - Birefringence Phase Tip or Tilt Moves Image Tip - Tilt
(5) Spherical Aberration

\[\Delta \Phi = \frac{\pi z}{4\lambda_0} \left(\frac{-r^4}{2^4} \right) = \frac{\pi}{4\lambda_0} \frac{r^4}{2^3} \propto r^4 \] (Pupil Height)^2

 CSI (Image Height \(v_0 \) has no effect)

Stop down lens to reduce effect of spherical aberration

Paraxial Focus