1051-733 Optics         Course Outline

Chapter References:

            (H) = Hecht, Optics
            (BW) = Born and Wolf, Principles of Optics
            (P3) = Pedrotti. et al., Introduction to Optics
            (PON) = New Physical Optics Notebook, Reynolds, De Velis, Parrent, Thompson
            (G) = Linear Systems, Fourier Transforms, and Optics, Gaskill

 I.        Wave Optics and Imaging
A.    
Review of wave equation (P3 §4, BW §1, H §2)
B.    
Electric and magnetic fields  (BW §1, H §3)
C.    
Review of Maxwell's equations, propagation of electromagnetic fields  (BW §1, H §3.2)
D.    Vector Calculus
       1.       vector and scalar fields
       2.      
Gradient of scalar field à vector field
       3.      
Divergence of vector field à scalar field
       4.      
Curl of 3-D vector field à 3-D vector field
       5.      
Laplacian of scalar and vector fields
E.     Electromagnetic waves

II.     Diffraction of light (H §10), (BW §8), (PON §9)
A.    
Huygens' principle (H §10.1, BW §8.2, G §10.2)
B.    
Fresnel-Kirchhoff Diffraction Integral (BW §8.3)
       1.      
Spherical waves
       2.      
Linearity and shift variance of process
C.    
Fresnel Diffraction (H §10.3, PON §9, P3 §13, BW §8, G §10.3)
       1.      
Propagation from point sources as paraboloidal waves
       2.      
Linearity and shift invariance, impulse response of propagation in Fresnel diffraction, quadratic-phase factors (H §10.3.1)
       3.      
Transfer function of light propagation in Fresnel diffraction, quadratic phase factor
       4.      
Fresnel diffraction from a straight edge, Cornu spiral (BW §8.7)
       5.      
Fresnel diffraction from a rectangular aperture (H §10.3.6)
       6.      
Fresnel diffraction from a circular aperture (H §10.3.2)
       7.      
Fresnel zone plates (H §10.3.5)
D.    
Fraunhofer Diffraction (H §10.2, BW §8.5, P3 §11, G §10.4)
       1.      
Approximation to spherical waves as plane waves, linear shift-variant process
       2.      
Relationship to Fourier Transform
       3.      
Diffraction from slits
       4.      
Single-slit diffraction (H §10.2.1, P3 §11.1)
       5.      
Two-slit diffraction (H §10.2.2, P3 §11.5)
       6.      
Many-slit diffraction, diffraction gratings (H §10.2.3, P3 §11.6)
       7.      
Diffractive spreading of a beam (P3, §11.)
       8.      
Rectangular and circular apertures; Airy disk (H §10.2.4, §10.2.5, P3 §11.3)

III.   Optical imaging in the diffraction model
A.    
Action of lenses with spherical surfaces (G §10.6)
B.    
Quadratic-phase model of lenses
C.    
Propagation, multiplication, propagation (C-M-C model of optical system) (H §11.3.3)
D.    
Imaging Equation:
E.     
Coherence
F.     
Diffraction limit
G.    
Different criteria for resolution: Dawes' limit, Rayleigh criterion, Sparrow criterion (H §10.2.6, PON §13.3)
H.    
Metrics of Optical Imaging System Performance
        1.      
Modulation Transfer Function (MTF) and Point Spread Function (psf) (H §11.3.5)
        2.      
Strehl ratio (BW §9, G §11.7)
I.       
Interaction of light and matter  (H §4.2, P3 §25, BW §2)
        1.      
Refractive Index and Dispersion
        2.      
Lorentz model for refractive index

IV.  Fresnel Equations and Applications (H §4.6) (BW §1.5)
A.    
Boundary Conditions at an Optical Interface (H §4.6.1) (BW §1.5.1)
B.    
Derivation of Fresnel Equations for TE and TM Polarizations (H §4.6.2) (BW §1.5.2)
C.    
Reflectance and Transmittance Curves (H §4.6.3) (BW §1.5.3)
D.    
Polarization Angle; Brewster Windows
E.     
Total Internal Reflection (TIR) (H §4.7) (BW §1.5.4)
F.     
Evanescent Wave, Frustrated TIR; Beam Splitters (H §4.7.1)
G.    
Phase Change on Reflection

V.     Optical Interference and Interferometers (BW §7, P3 §7)
A.    
Division of wavefront (PON §22, P3 §7, H §9.3)
        1.      
addition of waves
        2.      
Young's interferometer
B.    
Division of amplitude (PON §23, P3 §8, H §9.4)
        1.      
Fizeau interferometer
        2.      
Michelson and Twyman-Green interferometers
        3.      
Mach-Zehnder interferometer
        4.      
Sagnac interferometer
C.    
Interference by multiple reflections (H §9.6, P3 §7.9, PON §24)
        1.      
Thin films
        2.      
Fabry-Perot interferometer

VI.  Geometrical Optics and Imaging
A.    
Transition from wave to ray optics
B.    
Fermat's Principle (P3 §2.2, H §4.5, BW §3.3)
C.    
Refraction at a Spherical Surface
        1.      
Paraxial approximation, imaging equation
        2.      
Nature of Objects and Images
D.    
Imaging With Lenses (H §5, P3 §2.6, §3)
        1.      
Transverse Magnification
        2.      
Longitudinal Magnification
        3.      
Spherical Mirrors
        4.      
Third-Order (Seidel) Aberrations
        5.      
Systems of Thin Lenses
        6.      
Effective Focal Length
        7.      
Cardinal Points
        8.      
Stops and Pupils
        9.      
System f-Number
E.     
Ray Tracing (H §6,
        1.      
Marginal and Chief Rays
        2.      
Paraxial Ray Tracing
        3.      
Matrix Methods
F.     
Computed Ray Tracing, OSLO™