1051-733 Optics Course Outline
Chapter
References:
(H) = Hecht, Optics
(BW) = Born and Wolf, Principles of Optics
(P3) = Pedrotti. et al., Introduction to Optics
(PON) = New Physical Optics Notebook, Reynolds, De Velis, Parrent, Thompson
(G) = Linear Systems, Fourier Transforms, and Optics, Gaskill
A. Review of wave equation (P3 §4,
BW §1, H §2)
B. Electric and magnetic fields (BW §1, H §3)
C. Review of Maxwell's equations,
propagation of electromagnetic fields (BW §1, H §3.2)
D. Vector Calculus
2. Gradient of scalar field à vector field
3. Divergence of vector field à scalar field
4. Curl of 3-D vector field à 3-D vector field
5. Laplacian of scalar and
vector fields
E. Electromagnetic waves
II. Diffraction of light (H
§10), (BW §8), (PON §9)
A. Huygens' principle (H §10.1, BW §8.2, G §10.2)
B. Fresnel-Kirchhoff Diffraction Integral (BW §8.3)
1. Spherical waves
2. Linearity and shift variance
of process
C. Fresnel Diffraction (H
§10.3, PON §9, P3 §13, BW §8, G §10.3)
1. Propagation from point
sources as paraboloidal waves
2. Linearity and shift
invariance, impulse response of propagation in Fresnel diffraction,
quadratic-phase factors (H §10.3.1)
3. Transfer function of light
propagation in Fresnel diffraction, quadratic phase factor
4. Fresnel diffraction from a
straight edge, Cornu spiral (BW §8.7)
5. Fresnel diffraction from a
rectangular aperture (H §10.3.6)
6. Fresnel diffraction from a
circular aperture (H §10.3.2)
7. Fresnel zone plates (H
§10.3.5)
D. Fraunhofer Diffraction (H §10.2, BW §8.5, P3 §11, G §10.4)
1. Approximation to spherical
waves as plane waves, linear shift-variant process
2. Relationship to Fourier
Transform
3. Diffraction from slits
4. Single-slit diffraction (H
§10.2.1, P3 §11.1)
5. Two-slit diffraction (H
§10.2.2, P3 §11.5)
6. Many-slit diffraction, diffraction
gratings (H §10.2.3, P3 §11.6)
7. Diffractive spreading of a
beam (P3, §11.)
8. Rectangular and circular
apertures; Airy disk (H §10.2.4, §10.2.5, P3 §11.3)
III. Optical imaging in the
diffraction model
A. Action of lenses with
spherical surfaces (G §10.6)
B. Quadratic-phase model of
lenses
C. Propagation, multiplication,
propagation (C-M-C model of optical
system) (H §11.3.3)
D. Imaging Equation:![]()
E. Coherence
F. Diffraction limit
G. Different criteria for
resolution: Dawes' limit, Rayleigh criterion, Sparrow criterion
(H §10.2.6, PON §13.3)
H. Metrics of Optical Imaging
System Performance
1. Modulation Transfer Function
(MTF) and Point Spread Function (psf) (H §11.3.5)
2. Strehl ratio (BW §9, G §11.7)
I.
Interaction of light and matter
(H §4.2, P3 §25, BW §2)
1. Refractive Index and
Dispersion
2. Lorentz model for refractive
index
IV. Fresnel Equations and
Applications (H §4.6) (BW §1.5)
A. Boundary Conditions at an
Optical Interface (H §4.6.1) (BW §1.5.1)
B. Derivation of Fresnel
Equations for TE and TM Polarizations (H §4.6.2) (BW §1.5.2)
C. Reflectance and
Transmittance Curves (H §4.6.3) (BW §1.5.3)
D. Polarization Angle; Brewster
Windows
E. Total Internal Reflection
(TIR) (H §4.7) (BW §1.5.4)
F. Evanescent Wave, Frustrated
TIR; Beam Splitters (H §4.7.1)
G. Phase Change on Reflection
V. Optical Interference and
Interferometers (BW §7, P3 §7)
A. Division of wavefront (PON
§22, P3 §7, H §9.3)
1. addition of waves
2. Young's interferometer
B. Division of amplitude (PON §23,
P3 §8, H §9.4)
1. Fizeau interferometer
2. Michelson and Twyman-Green
interferometers
3. Mach-Zehnder interferometer
4. Sagnac interferometer
C. Interference by multiple
reflections (H §9.6, P3 §7.9, PON §24)
1. Thin films
2. Fabry-Perot interferometer
VI. Geometrical Optics and
Imaging
A. Transition from wave to ray
optics
B. Fermat's Principle (P3 §2.2,
H §4.5, BW §3.3)
C. Refraction at a Spherical
Surface
1. Paraxial approximation,
imaging equation
2. Nature of Objects and Images
D. Imaging With Lenses (H §5,
P3 §2.6, §3)
1. Transverse Magnification
2. Longitudinal Magnification
3. Spherical Mirrors
4. Third-Order (Seidel)
Aberrations
5. Systems of Thin Lenses
6. Effective Focal Length
7. Cardinal Points
8. Stops and Pupils
9. System f-Number
E. Ray Tracing (H §6,
1. Marginal and Chief Rays
2. Paraxial Ray Tracing
3. Matrix Methods
F. Computed Ray Tracing, OSLO™