1. Determine which of the following describe traveling waves. Where appropriate, draw the profile and find the speed and direction of motion.

(a) $\psi[y,t] = \exp[-(a^2y^2 + b^2t^2 - 2abty)]$

The argument of a traveling wave must have the form $\Phi[y,t] = k_0 z - \omega_0 t$ where k_0 and ω_0 are constants. In this case

$$f[y,t] = \exp[-(a^2y^2 + b^2t^2 - 2abty)]$$
$$= \exp[-(ay - bt)^2] = \exp[-(\Phi[y,t])^2]$$

The argument $u = ay - bt$ does have the proper form for the function $f[u] = \exp[-u^2]$, so this is a traveling wave. The argument remains constant for larger y if t increases, so the form moves to the right towards $+\infty$. Examples are plotted below for different times t_0 and $t_1 > t_0$ for $a = b = 1$
(b) $\psi [z, t] = A \sin (az^2 - bt^2)$

we can check this one by applying it to the wave equation $\frac{\partial^2 \psi}{\partial z^2} = \frac{1}{v^2} \frac{\partial^2 \psi}{\partial t^2}$.

$$\Rightarrow v^2 = \left(\frac{\partial^2 \psi}{\partial t^2} \right) \left(\frac{\partial^2 \psi}{\partial z^2} \right)^{-1}$$

$$\frac{\partial \psi}{\partial z} = A \frac{\partial}{\partial z} \sin (az^2 - bt^2) = 2Aaz \cos (bt^2 - az^2)$$

$$\frac{\partial^2 \psi}{\partial z^2} = \frac{\partial}{\partial z} (2Aaz \cos (bt^2 - az^2)) = 2Aa \cos (bt^2 - az^2) + 4Aa^2 z^2 \sin (bt^2 - az^2)$$

$$\frac{\partial \psi}{\partial t} = A \frac{\partial}{\partial t} \sin (az^2 - bt^2) = -2Abt \cos (bt^2 - az^2)$$

$$\frac{\partial^2 \psi}{\partial t^2} = \frac{\partial}{\partial t} (-2Abt \cos (bt^2 - az^2)) = 4Ab^2 t^2 \sin (bt^2 - az^2) - 2Ab \cos (bt^2 - az^2)$$

$$\frac{\left(\frac{\partial^2 \psi}{\partial z^2} \right) \left(\frac{\partial^2 \psi}{\partial t^2} \right)}{4Aa^2 z^2 \sin (bt^2 - az^2) + 2Aa \cos (bt^2 - az^2)}$$

which does not reduce to a velocity, so NOT a traveling wave.

(c) $\psi [x, t] = A \sin \left(2\pi \left(\frac{x}{a} + \frac{t}{b} \right)^2 \right)$

This has the proper form where the velocity is $v = \lambda_0 \nu_0 = \frac{a}{b}$. The argument shows that x must decrease as t increases, so the function moves to the left towards $x = -\infty$. The function is shown below for $A = 1$ unit, $a = 1$ unit, and $b = 1$ sec for $t_0 = 0$ and $t_1 = 1$:

$f [y, t = 0]$ (black) and $f [y, t = 1]$ (red) for $A = a = b = 1$ unit

2
(d) $\psi [x, t] = A \cos^2 [2\pi (t - x)]$

Again has the correct form so it is a travelling wave. As t increases, so must x so this wave moves to the right towards $x = +\infty$. Two plots at different times are shown below for $A = 1$ evaluated at $t = 0$ (black) and $t = 0.1$ (red).

[f(y,t=0) (black) and f(y,t=0.1) (red) for A = 1 unit]
2. The figure shows the profile of a transverse wave on a string traveling in the positive z-direction at a speed of $\frac{1 \text{ m}}{s}$.

(a) Determine its wavelength.

the distance between adjacent maxima or minima is $Z_0 = 300 \text{ mm}$

(b) Notice that as the wave passes any fixed point on the z-axis, the string at that location oscillates in time. Draw a graph of $\psi [t]$ showing how a point on the rope at $z = 0$ oscillates.

since the velocity is $1 \frac{\text{m}}{s}$, then the function moves past the viewer at one location through $3 \frac{1}{3}$ cycles in one second. The graph of the temporal behavior looks just like that of the spatial behavior except the horizontal axis becomes time in seconds and the unit of $z = 300 \text{ mm}$ becomes $t = \frac{3}{10} \text{ sec}$.

(c) What is the temporal frequency of the wave?

As just shown, a wave with period $\lambda_0 = 300 \text{ mm}$ that moves at $v = \frac{1 \text{ m}}{s}$ has one cycle go past in $\frac{3}{10} \text{ sec}$, which means that the frequency is $\frac{10}{3} \text{ Hz}$.
3. A particle executing simple harmonic motion given by

\[y[t] = 4 \sin \left[2\pi \frac{t}{6} + \phi_0 \right] \]

is displaced by +1 unit when \(t = 0 \). Find:

(a) the phase angle \(\Phi[t = 0] \equiv \phi_0 \)

\[y[0] = +1 = 4 \sin \left[2\pi \frac{0}{6} + \phi_0 \right] = 4 \sin \left[\phi_0 \right] \]

\[\Rightarrow \sin \left[\phi_0 \right] = + \frac{1}{4} \Rightarrow \phi_0 = \sin^{-1} \left[\frac{1}{4} \right] \]

\[\cong 0.252 \text{ radians} \cong 14.4^\circ \cong 14^\circ24' \]

\[\Rightarrow y[t] = 4 \sin \left[2\pi \frac{t}{6} + \sin^{-1} \left[\frac{1}{4} \right] \right] \cong 4 \sin \left[2\pi \frac{t}{6} + 0.252 \right] \]

(b) the difference in phase between any two positions of the particle separated in time by 2 sec;

\[t_1 \& t_2 \text{ are any two times such that } t_2 - t_1 = 2 \text{ sec} \]

\[y[t_2] = 4 \sin \left[2\pi \frac{t_2}{6} + \sin^{-1} \left[\frac{1}{4} \right] \right] \]

\[y[t_1] = 4 \sin \left[2\pi \frac{t_1}{6} + \sin^{-1} \left[\frac{1}{4} \right] \right] \]

\[\Delta \Phi = \Phi[t_2] - \Phi[t_1] = 2\pi \frac{t_2 - t_1}{6} = 2\pi \frac{2 \text{ sec}}{6 \text{ sec}} = \frac{2\pi}{3} \text{ radians} = 120^\circ \]

(c) the phase angle corresponding to a displacement of +2;

if \(y = +2 \text{ units} \), then the initial equation is:

\[+2 = 4 \sin \left[2\pi \frac{t}{6} + \sin^{-1} \left[\frac{1}{4} \right] \right] = 4 \sin \left[\Phi[t] \right] \]

\[\Rightarrow \sin \left[\Phi[t] \right] = \frac{2}{4} \Rightarrow \Phi[t] = \frac{\pi}{6} \cong 30^\circ \]

(d) the time necessary to reach a displacement of +3 units from the initial position.

if \(y = +3 \text{ units} \), then the initial equation is:

\[+3 = 4 \sin \left[2\pi \frac{t}{6} + \sin^{-1} \left[\frac{1}{4} \right] \right] = 4 \sin \left[\Phi[t] \right] \]

\[\Rightarrow \sin \left[\Phi[t] \right] = \frac{3}{4} \Rightarrow \Phi[t] = \sin^{-1} \left[\frac{3}{4} \right] \cong 48^\circ40' \]

\[\Rightarrow 2\pi \frac{t}{6} + 14^\circ24' \cong 48^\circ40' \]

\[\Rightarrow 2\pi \frac{t}{6} \cong 34^\circ16' \cong 0.598 \Rightarrow t \cong \frac{6}{2\pi} \cdot 0.598 \cong 0.57 \text{ sec} \]
4. A wave vibrates according to the equation

\[y(z, t) = \frac{1}{2} \sin \left(\frac{\pi z}{3} \right) \cdot \cos (40\pi t) \]

where \(y \) and \(z \) are expressed in mm and \(t \) in sec.

(a) What are the amplitudes and the velocities of the component waves that give rise to this vibration?

This is a standing wave that may be created by adding two waves with the same amplitude, wavelength, and frequency headed in opposite directions via the relationship:

\[
A_0 \cos [\phi_1 (z, t)] + A_0 \cos [\phi_2 (z, t)] = 2A_0 \cos \left[\frac{\phi_1 (z, t) + \phi_2 (z, t)}{2} \right] \cdot \cos \left[\frac{\phi_1 (z, t) - \phi_2 (z, t)}{2} \right]
\]

\[
\Rightarrow A_0 \cos [k_0 z - \omega_0 t] + A_0 \cos [k_0 z + \omega_0 t] = 2A_0 \cos [k_0 z] \cdot \cos [\omega_0 t]
\]

so

\[
2A_0 = \frac{1}{2} \text{mm} \quad \Rightarrow \quad A_0 = \frac{1}{4} \text{mm}
\]

\[
k_0 = \frac{\pi}{3} = \frac{2\pi}{6} \quad \Rightarrow \quad \lambda_0 = 6 \text{mm}
\]

\[
\omega_0 = 40\pi \quad \Rightarrow \quad \nu_0 = 20 \text{Hz} \quad \Rightarrow \quad T_0 = \frac{1}{20} \text{sec}
\]

\[
v_\phi = \frac{\omega_0}{k_0} = \lambda_0 \nu_0 = 6 \text{mm} \cdot 20 \text{Hz} = \boxed{120 \text{ mm/sec}}
\]

(b) What is the distance between the nodes?

\[
\sin \left(\frac{\pi z}{3} \right) = \sin \left(\frac{2\pi z}{6} \right) \quad \Rightarrow \quad \text{2 nodes in 6 mm} \quad \Rightarrow \quad \boxed{3 \text{ mm}}
\]

(c) What is the velocity of a particle at the position \(z = 1.5 \text{ mm} \) when \(t = \frac{9}{8} \text{ sec} \)?

\[
y \left[z = 1.5 \text{ mm}, t = \frac{9}{8} \text{ sec} \right] = \frac{1}{2} \sin \left[\frac{\pi \cdot 1.5}{3} \right] \cdot \cos \left[40\pi \cdot \frac{9}{8} \right]
\]

\[
= \frac{1}{2} \sin \left[\frac{\pi}{2} \right] \cdot \cos [35\pi]
\]

\[
= \frac{1}{2} \cdot 1 \cdot \cos [\pi] = -\frac{1}{2}
\]

This is an extremum, so \boxed{\text{velocity} = 0 \text{ mm/sec}}
5. By finding appropriate relations for $k \cdot \mathbf{r}$, write equations describing a sinusoidal plane wave in three directions in terms of wavelength and velocity for the three cases:

(a) propagation along the x-axis;

$$k = \begin{bmatrix} \frac{2\pi}{\lambda_0} \\ 0 \\ 0 \end{bmatrix} \implies \psi[\mathbf{r},t] = A_0 \cos \left(\frac{2\pi}{\lambda_0} (x - \lambda_0 \nu_0 t) \right) = A_0 \cos \left(\frac{2\pi}{\lambda_0} (x - v_\phi t) \right)$$

(b) propagation along the line $x = y; z = 0$;

$$k = \begin{bmatrix} \frac{2\pi}{\lambda_0} \cos \left(\frac{\pi}{4} \right) \\ \frac{2\pi}{\sqrt{2}\lambda_0} \sin \left(\frac{\pi}{4} \right) \\ 0 \end{bmatrix} \implies \psi[\mathbf{r},t] = A_0 \cos \left[\frac{2\pi}{\lambda_0} \left(\frac{x + y}{\sqrt{2}} \pm v_\phi t \right) \right]$$

(c) propagation perpendicular to the planes $x + y + z = k$ where k is a constant.

$$\mathbf{k} = \begin{bmatrix} k_x \\ k_y \\ k_z \end{bmatrix} \text{ where } k_x = k_y = k_z \equiv a \implies \mathbf{k} = \begin{bmatrix} a \\ a \\ a \end{bmatrix} \text{ and } |\mathbf{k}| = \frac{2\pi}{\lambda_0} = \sqrt{3}a$$

$$\implies a = \frac{2\pi}{\sqrt{3}\lambda_0}$$

$$\implies \psi[\mathbf{r},t] = A_0 \cos \left(\frac{2\pi}{\sqrt{3}\lambda_0} (x + y + z \pm v_\phi t \cdot \sqrt{3}) \right)$$
6. Two waves of the same amplitude, speed, and frequency travel together in the same region of space. The resultant wave may be written as a sum of two individual waves:

\[\psi[z,t] = A_0 \sin [k_0z + \omega_0t] + A_0 \sin [k_0z - \omega_0t + \pi] \]

With the help of complex exponentials, show that:

\[\psi[z,t] = 2A_0 \cos [k_0z] \cdot \sin [\omega_0t] \]

\[
A_0 \sin [k_0z + \omega_0t] + A_0 \sin [k_0z - \omega_0t + \pi] = A_0 \sin [k_0z + \omega_0t] - A_0 \sin [k_0z - \omega_0t]
\]

\[
= A_0 \Im \{\exp [+i (k_0z + \omega_0t)]\} - A_0 \Im \{\exp [+i (k_0z - \omega_0t)]\}
\]

\[
A_0 \Im \{\exp [+ik_0z] (\exp [+i\omega_0t] - \exp [-i\omega_0t])\}
\]

\[
= A_0 \Im \{\exp [+ik_0z] \cdot 2i \sin [+\omega_0t]\}
\]

\[
= 2A_0 \sin [+\omega_0t] \Im \{i \cdot \exp [+ik_0z]\}
\]

\[
= 2A_0 \sin [+\omega_0t] \Im \{i \cdot (\cos [+k_0z] + i \sin [+k_0z])\}
\]

\[
= 2A_0 \sin [+\omega_0t] \Im \{(i \cdot \cos [+k_0z] - \sin [+k_0z])\}
\]

\[
= 2A_0 \cos [k_0z] \cdot \sin [\omega_0t]
\]