In the book, read the sections in Chapter 6 about the functions we have discussed and read Chapter 8.

Do the following problems:

1. Sketch the following functions and evaluate their continuous Fourier transforms

(a) \(f_1 [x] \equiv \begin{cases} 0 & \text{if } |x| > 2 \\ \frac{1}{2} & \text{if } |x| = 2 \\ 1 & \text{if } |x| < 2 \end{cases} \)

(b) \(f_2 [x] \equiv \begin{cases} 0 & \text{if } x > 4 \\ \frac{1}{2} & \text{if } x = 4 \\ 1 & \text{if } 0 < x < 4 \\ \frac{1}{2} & \text{if } x = 0 \\ 0 & \text{if } x < 0 \end{cases} \)

(c) \(f_3 [x] = \exp[-x] \cdot STEP [x] \)

(d) \(f_4 [x] = \exp[-x] \cdot STEP \left[\frac{x}{2} \right] \)

2. The operation of “convolution” of two functions \(f [x] \) and \(h [x] \) is defined:

\[
f [x] * h [x] = \int_{-\infty}^{+\infty} f [\alpha] \cdot h [x - \alpha] \, d\alpha
\]

Evaluate the convolution of \(f [x] = \cos \left[2\pi \frac{x}{2} + \frac{\pi}{4} \right] \) with the following functions for \(h [x] \) and sketch (or plot) the results:

(a) \(h_1 [x] = RECT [x] \)

(b) \(h_2 [x] = \frac{1}{2} RECT \left[\frac{x}{2} \right] \)

3. Evaluate the convolutions of the following functions by “direct integration” and sketch (or plot) the results:

(a) \(g_1 [x] = RECT [x] * RECT [x] \)

(b) \(g_2 [x] = RECT \left[\frac{x}{2} \right] * RECT \left[\frac{x}{2} \right] \)

(c) \(g_3 [x] = RECT [x] * RECT [x] * RECT [x] \)

4. Evaluate and sketch (or plot) the following convolutions:

(a) \((\exp[-x] \cdot STEP [x]) * RECT [x] \)

(b) \((\exp[-x] \cdot STEP [x]) * (\exp[-x] \cdot STEP [x]) \)