Types of DIP Operations

1. **Pixel Operations**
 - Output value depends on value of same pixel in input

2. **Neighborhood Operations**
 - Output value depends on values of pixels in neighborhood

3. **Others are used, too**
 - "Global" operations: output depends on values of ALL pixels
 - "Shape" operations: output depends on object shape

Pixel (or “Point”) Operations

- Gray value \(g \) of output pixel \([n_0,m_0]\) depends **ONLY** on gray value \(f \) of the **SAME** input pixel \([n,m]\)

Point Operations

- Gray value \(g \) of output pixel depends only on gray value \(f \) of the corresponding input pixel
 - If one pixel with input value “10” becomes output value “100”, then all inputs at “10” \(\rightarrow \) “100”

- Useful for Contrast Enhancement and Image Segmentation
 - “Segmentation” ⇒ Classify pixels
Image “Histogram”

- Useful statistic of an image
- Graph of the “pixel population” for each gray value
 - “frequency of occurrence” of gray values
- Histogram of “dark” (low-contrast) image is concentrated at small grays

Images with Same Histogram

Lesson:

- Histograms are “statistics”
 - More than one image has the same histogram
- Histograms of many images are “bimodal”
 - two arithmetic “modes”
 - “mode” = value occurring with largest frequency = most populated level
- Modes for “foreground” and “background” objects
Examples of Images and Histograms

Histograms for Segmentation

Use of Histograms for Contrast Enhancement

- Use Histogram to find “mapping” of gray values to enhance contrast
 1. Thresholding: produces "binary" ("black-and-white" image) from input gray-scale image
 2. Stretching: "steepens" mapping
 3. Equalization: maximizes differences between image gray values
Histogram Operations

Input Image $f(x,y)$

Histogram of $f(x,y)$

Output Image $g(x,y)$

Histogram $g(x,y)$

Histogram Thresholding

Input Image $f(x,y)$

Histogram of $f(x,y)$

Output Image $g(x,y)$

Histogram $g(x,y)$

Histogram Equalization

Input Image $f(x,y)$

Histogram of $f(x,y)$

Output Image $g(x,y)$

Histogram $g(x,y)$
Neighborhood Operations

- Gray value \(g \) of one output pixel depends on the gray values of pixels in the neighborhood of the corresponding input pixel.
- Useful to (1) attenuate or (2) enhance differences in gray values:
 1. “noise reduction”
 2. “edge enhancement”

Noise Reduction/Removal

- “Noise” = Distribution of gray values due to statistical fluctuations in “something”:
 - variation in sensitivity of pixels
 - random fluctuations
3-Bit Image with Noise

Average Value = 4
"Variation" = 1

```
5  5  6  3  5  3  3  3
5  5  4  4  4  4  4  2
5  5  6  2  6  3  3  3
3  4  4  4  4  4  3  3
5  5  6  2  5  4  5  5
3  4  5  2  4  6  6  5
3  3  4  3  3  5  4  4
3  4  4  4  4  4  3  3
```

Reduce Noise by “Local Average”

- Replace each pixel by average of 9 neighbors centered on that pixel

```
5  5  6  3  5  3  3  3
5  5  4  4  4  4  4  2
5  5  6  2  6  3  3  3
3  4  4  4  4  4  3  3
5  5  6  2  5  4  5  5
3  4  5  2  4  6  6  5
3  3  4  3  3  5  4  4
3  4  4  4  4  4  3  3
```

Replace "2" in red box by average of values of pixels in blue box

```
3 + 4 + 4 + 6 + 2 + 5 + 2 + 4 = 32
9
```

Round average to nearest integer

```
3 \rightarrow 4
```

Side Comment About Local Averagers

- Summation of gray values across the image
- Related to the “Integral” in Calculus, which is a summation of amplitudes across a function
Round Average Values for Display

Before Rounding

<table>
<thead>
<tr>
<th>5.6</th>
<th>4.7</th>
<th>4.2</th>
<th>5.9</th>
<th>3.8</th>
<th>3.2</th>
<th>6.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3</td>
<td>5.3</td>
<td>2.2</td>
<td>3.1</td>
<td>3.2</td>
<td>2.7</td>
<td>3.1</td>
</tr>
<tr>
<td>4.4</td>
<td>3.1</td>
<td>1.4</td>
<td>1.5</td>
<td>1.4</td>
<td>3.9</td>
<td>4.1</td>
</tr>
<tr>
<td>1.2</td>
<td>5.1</td>
<td>8.9</td>
<td>1.6</td>
<td>4.6</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>6.7</td>
<td>4.8</td>
<td>8.8</td>
<td>1.4</td>
<td>1.4</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>3.7</td>
<td>1.9</td>
<td>1.4</td>
<td>4.4</td>
<td>4.1</td>
<td></td>
</tr>
<tr>
<td>5.3</td>
<td>3.7</td>
<td>1.8</td>
<td>2.1</td>
<td>4.0</td>
<td>2.0</td>
<td></td>
</tr>
</tbody>
</table>

Mean Value = 4.04
Variation = 0.44

After Rounding

<table>
<thead>
<tr>
<th>5</th>
<th>5</th>
<th>4</th>
<th>4</th>
<th>4</th>
<th>4</th>
<th>3</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Mean Value = 4.03
Variation = 0.53

3-bit Noise Image After Averaging

Mean Value = 4
Variation = 1/3

Section of 3-bit Image of Edge
Section of 3-bit Image of Edge

Result of Average

<table>
<thead>
<tr>
<th>0.0</th>
<th>0.0</th>
<th>0.0</th>
<th>2.3</th>
<th>4.7</th>
<th>0.0</th>
<th>0.0</th>
<th>0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2.3</td>
<td>4.7</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2.3</td>
<td>4.7</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2.3</td>
<td>4.7</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2.3</td>
<td>4.7</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2.3</td>
<td>4.7</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2.3</td>
<td>4.7</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2.3</td>
<td>4.7</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

After Rounding

<table>
<thead>
<tr>
<th>0</th>
<th>0</th>
<th>0</th>
<th>2</th>
<th>5</th>
<th>7</th>
<th>7</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

Effect of Local Average on Edge

Input image has "Sharp" Edge

Output has "Fuzzy" Edge

Lesson of Local Averaging

- Local Averaging Reduces the Variation in Gray Value
 - "Pushes Values Towards the Mean Value"
- Effective for Decreasing Visibility of Noise
- Also "Blurs" Edges of Image Features
Edge Detector

- Observation: Local Averager Makes Edge “Blurry” and More Difficult to See
- How to “Detect” an Edge?
 - Can’t use Local “Average”
 - Try a Local “Difference”

Local Difference

- Compute difference of gray values of adjacent pixels

“Local Difference” at Edge

Replace “0” in red box by difference of gray value in blue – red

7 - 0 = 7

Replace “7” in yellow box by difference of gray value in yellow – green

7 - 7 = 0
Result of “Local Difference” at Edge

Input Image $f(n,m)$

Output Image $g(n,m)$

Reversed Edge ⇒ Negative Values

$7 - 0 = +7$
$0 - 7 = -7$

Local Difference ⇒ More Grays

- Input Values: $0 \leq f \leq +7$
- Possible Output Values: $-7 \leq g \leq +7$
 - 8 levels in input, 15 levels in output
- To Display on Monitor
 - Add a constant value – the “bias” to make all values positive
 - Divide by Two to fit in original gray scale
Side Comment About Local Differencers

- Difference of adjacent gray values
- Related to “Derivative” in Calculus
 - Derivative = difference of adjacent amplitudes (values) across a function
 - Derivative is “large” where the gray values change, as at edges

Image “Sharpener”

- Combination of “averaging” and “differencing”
- Replace each pixel by average of 9 neighbors centered on that pixel

\[
\text{Replace “0” in red box by difference between that value and average of values of surrounding pixels in blue box}
\]

\[
\text{Round average to nearest integer}
\]

Combine Average and Difference

- One Example of an Image “Sharpener”

\[
\begin{array}{|c|c|c|}
\hline
-1 & -1 & -1 \\
\hline
-1 & +9 & -1 \\
\hline
-1 & -1 & -1 \\
\hline
\end{array}
\]

- multiply center pixel by 9
- subtract sum of neighbors
Results of Sharpening

Image “Sharpener”
- Creates “steeper” edges with “overshoot” to give appearance of sharper image